首页> 外文期刊>Nanotechnology >Bending response of single layer MoS2
【24h】

Bending response of single layer MoS2

机译:单层MoS2的弯曲响应

获取原文
获取原文并翻译 | 示例
           

摘要

Using molecular mechanics (or dynamics) simulations, three different approaches, including the targeted molecular mechanics, four-point bending and nanotube methods, are employed to investigate the bending response of single layer MoS2 (SLMoS2), among which four-point bending is the most accurate approach to determine the bending stiffness according to the continuum theory. It is found that when the bending curvature radius is large enough (e.g. >4 nm), three approaches will give the same bending stiffness of SLMoS2 and the bending behavior is isotropic for SLMoS2, whereas the nanotube method with small tubes (e.g. <4 nm) cannot give the correct bending stiffness. Compared with the reported result from the MoS2 nanotube calculated by density functional theory, the revised Stillinger-Weber (SW) and reactive empirical bond-order (REBO) potentials can give the reasonable bending stiffness of SLMoS2 (8.7-13.4 eV) as well as the effective deformed conformation. In addition, since the Mo-S bond deformation of SLMoS2 under bending is similar to that under in-plane tension/compression, the continuum bending theory can quite accurately predict the bending stiffness of SLMoS2 if a reasonable thickness of SLMoS2 is given. For SLMoS2, the reasonable thickness should be larger than the distance between its two S atomic planes and lower than the distance between two Mo atomic planes of bulk MoS2 crystal, e.g. 0.375-0.445 nm.
机译:使用分子力学(或动力学)模拟,采用三种不同的方法,包括目标分子力学,四点弯曲和纳米管方法,研究了单层MoS2(SLMoS2)的弯曲响应,其中四点弯曲是根据连续体理论确定弯曲刚度的最准确方法。发现当弯曲曲率半径足够大(例如> 4 nm)时,三种方法将赋予SLMoS2相同的弯曲刚度,并且SLMoS2的弯曲行为是各向同性的,而采用小管的纳米管方法(例如<4 nm )无法给出正确的弯曲刚度。与通过密度泛函理论计算得出的MoS2纳米管的报告结果相比,修正的Stillinger-Weber(SW)和反应性经验键序(REBO)势能提供SLMoS2的合理弯曲刚度(8.7-13.4 eV)以及有效的变形构象。此外,由于SLMoS2在弯曲下的Mo-S键变形与平面内拉伸/压缩下的Mo-S键变形相似,因此如果给出合理的SLMoS2厚度,连续弯曲理论可以相当准确地预测SLMoS2的弯曲刚度。对于SLMoS2,合理的厚度应大于其两个S原子平面之间的距离,并且小于块状MoS2晶体(例如,MoS2晶体)的两个Mo原子平面之间的距离。 0.375-0.445纳米。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号