...
首页> 外文期刊>Nanotechnology >Observation of free surface-induced bending upon nanopatterning of ultrathin strained silicon layer
【24h】

Observation of free surface-induced bending upon nanopatterning of ultrathin strained silicon layer

机译:纳米超薄应变硅层构图时自由表面诱导弯曲的观察

获取原文
获取原文并翻译 | 示例

摘要

We provide evidence of nanopatterning-induced bending of an ultrathin tensile strained silicon layer directly on oxide. This strained layer is achieved through the epitaxial growth of silicon on a Si_(0.84)Ge _(0.16) virtual substrate and subsequent transfer onto a SiO _2-capped silicon substrate by combining hydrophilic wafer bonding and the ion-cut process. Using high resolution transmission electron microscopy, we found that the upper face of the strained silicon nanostructures fabricated from the obtained heterostructure using electron beam lithography and dry reactive ion etching displays a concave shape. This bending results from the free-surface-induced strain relaxation, which implies lattice out-of-plane expansion near the edges and concomitant contraction at the center. For a ~110 nm × 400 nm × 20 nm nanostructure, the bending is associated with an angle of 1.5° between the (2.20) vertical atomic planes at the edges of the ~110 nm side. No bending is, however, observed at the strained Si/SiO_2 interface. This phenomenon cannot be explained by the classical Stoney's formula or related formulations developed for nanoscale thin films. Here we employed a continuum mechanical approach to describe these observations using three-dimensional numerical calculations of relaxation-induced lattice displacements.
机译:我们提供了直接在氧化物上的超薄拉伸应变硅层的纳米图案诱导弯曲的证据。该应变层是通过在Si_(0.84)Ge _(0.16)虚拟衬底上外延生长硅,然后通过结合亲水性晶圆键合和离子切割工艺,将其转移到SiO _2覆盖的硅衬底上而实现的。使用高分辨率透射电子显微镜,我们发现由使用电子束光刻和干反应离子刻蚀获得的异质结构制成的应变硅纳米结构的上表面显示出凹形。这种弯曲是由自由表面引起的应变松弛引起的,这意味着边缘附近的晶格面外膨胀和中心处的伴随收缩。对于〜110 nm×400 nm×20 nm的纳米结构,弯曲与〜110 nm侧边缘的(2.20)个垂直原子平面之间的1.5°角相关。然而,在应变的Si / SiO_2界面上未观察到弯曲。这种现象无法用经典的Stoney公式或为纳米级薄膜开发的相关公式来解释。在这里,我们采用连续力学方法来描述这些观察结果,其中使用了松弛引起的晶格位移的三维数值计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号