首页> 外文期刊>Nano letters >Precise Perforation and Scalable Production of Si Particles from Low-Grade Sources for High-Performance Lithium Ion Battery Anodes
【24h】

Precise Perforation and Scalable Production of Si Particles from Low-Grade Sources for High-Performance Lithium Ion Battery Anodes

机译:高性能锂离子电池阳极的低品位硅源的精确穿孔和可扩展生产

获取原文
获取原文并翻译 | 示例
           

摘要

Alloy anodes, particularly silicon, have been intensively pursued as one of the most promising anode materials for the next generation lithium-ion battery primarily because of high specific capacity (>4000 mAh/g) and elemental abundance. In the past decade, various nanostructures with porosity or void space designs have been demonstrated to be effective to accommodate large volume expansion (similar to 300%) and to provide stable solid electrolyte interphase (SEI) during electrochemical cycling. However, how to produce these building blocks with precise morphology control at large scale and low cost remains a challenge. In addition, most of nanostructured silicon suffers from poor Coulombic efficiency due to a large surface area and Li ion trapping at the surface coating. Here we demonstrate a unique nanoperforation process, combining modified ball milling, annealing, and acid treating, to produce porous Si with precise and continuous porosity control (from 17% to 70%), directly from low cost metallurgical silicon source (99% purity, similar to$1/kg). The produced porous Si coated with graphene by simple ball milling can deliver a reversible specific capacity of 1250 mAh/g over 1000 cycles at the rate of 1C, with Coulombic efficiency of first cycle over 89.5%. The porous networks also provide efficient ion and electron pathways and therefore enable excellent rate performance of 880 mAh/g at the rate of SC. Being able to produce particles with precise porosity control through scalable processes from low-grade materials, it is expected that this nanoperforation may play a role in the next generation lithium ion battery anodes, as well as many other potential applications such as optoelectronics and thermoelectrics.
机译:合金阳极,特别是硅,由于具有高的比容量(> 4000 mAh / g)和元素丰度,已被广泛用作下一代锂离子电池最有希望的阳极材料之一。在过去的十年中,已证明具有多孔性或空隙设计的各种纳米结构可有效适应大体积膨胀(约300%)并在电化学循环过程中提供稳定的固体电解质中间相(SEI)。然而,如何以大规模和低成本生产具有精确形态学控制的这些构件仍然是一个挑战。另外,由于大表面积和Li离子在表面涂层处的俘获,大多数纳米结构的硅具有差的库仑效率。在这里,我们展示了一种独特的纳米穿孔工艺,结合了改进的球磨,退火和酸处理工艺,可以直接从低成本的冶金硅源(纯度为99%,类似于$ 1 / kg)。通过简单的球磨制备的涂有石墨烯的多孔硅可以在1000次循环中以1C的速率提供1250 mAh / g的可逆比容量,第一次循环的库仑效率超过89.5%。多孔网络还提供有效的离子和电子通道,因此在SC速率下可实现880 mAh / g的出色速率性能。可以通过可扩展的工艺从低品位材料生产具有精确孔隙率控制的颗粒,预计这种纳米穿孔可在下一代锂离子电池负极以及许多其他潜在应用(例如光电和热电)中发挥作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号