首页> 外文期刊>Electrochimica Acta >High Lithium Storage Performance of Mn-doped Sn4P3 nanoparticles
【24h】

High Lithium Storage Performance of Mn-doped Sn4P3 nanoparticles

机译:Mn掺杂Sn4P3纳米粒子的高储锂性能

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper reports the synthesis of various molar concentrations of manganese (Mn)-doped Sn4P3 nanoparticles and and their efficient use as anode materials for rechargeable lithium-ion batteries (LIBs). The nanoparticles were synthesized via a novel and facile ultrasonic assisted hydrothermal method and characterized in detail by various analytical techniques. The XRD, SEM, and TEM results showed that Mn ion was successfully substituted on the Sn4P3 layered structure without any structure changes. The long cycle stability of the as-prepared Mn-doped Sn4P3 nanoparticles have been tested as an anode material for lithium ion batteries at the different current density. By detailed experimental results exhibited that the Mn dopant content crucially determines the electrochemical performances of Sn4P3 nanoparticles. Electrochemical measurements show that the Sn4P3 nanoparticles with 0.10 mol% molar concentration of Mn dopant give the best cycling performances. They deliver a discharge capacity of 488 mAh g(-1) after 150 cycles at the current density of 100 mA g(-1). Even after 150 cycles at a current density of 200 mA g(-1), the specific capacity still could be remained at 420 mAh g(-1). Further increasing the current density to 1000 mA g(-1), it could still maintain 255 mAh g(-1) after 200 cycles. It is confirmed that Mn substitution in the Sn-Mn-P structure is an important pole to improve the structure stability and electrochemical properties. (C) 2016 Elsevier Ltd. All rights reserved.
机译:本文报道了锰(Mn)掺杂的各种浓度的Sn4P3纳米颗粒的合成及其作为可再充电锂离子电池(LIBs)阳极材料的有效用途。纳米颗粒是通过新颖,便捷的超声辅助水热法合成的,并通过各种分析技术进行了详细表征。 XRD,SEM和TEM结果表明,Mn离子被成功取代在Sn4P3层状结构上,没有任何结构变化。已经测试了所制备的Mn掺杂的Sn4P3纳米颗粒在不同电流密度下作为锂离子电池负极材料的长循环稳定性。通过详细的实验结果表明,Mn掺杂剂的含量决定了Sn4P3纳米颗粒的电化学性能。电化学测量表明,Mn掺杂剂的摩尔浓度为0.10 mol%的Sn4P3纳米颗粒具有最佳的循环性能。它们在150次循环后以100 mA g(-1)的电流密度提供488 mAh g(-1)的放电容量。即使在200 mA g(-1)的电流密度下进行150次循环后,比容量仍可以保持在420 mAh g(-1)。将电流密度进一步提高到1000 mA g(-1),在200个循环后仍可以保持255 mAh g(-1)。可以确认,Sn-Mn-P结构中的Mn取代是提高结构稳定性和电化学性能的重要极。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号