...
首页> 外文期刊>Electrochimica Acta >Large-area plasmonic electrodes and active plasmonic devices generated by electrochemical processes
【24h】

Large-area plasmonic electrodes and active plasmonic devices generated by electrochemical processes

机译:电化学过程产生的大面积等离子体电极和有源等离子体装置

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This work describes a fast electrodeposition method for generating gold plasmonic electrodes and their use as active plasmonic devices. Gold nanoparticles (AuNPs) are easily obtained on large areas (up to several square centimeters) on indium tin oxide (ITO) electrodes using electroreduction of an Au-III salt by chronoamperometry. These AuNP substrates exhibit a strong localized surface plasmon resonance (LSPR) signal in the visible range, and constitute low-cost plasmonic electrodes. The average size, the density and the dispersity of the AuNPs, as seen by scanning electron microscopy (SEM), can be modulated by the potential applied during electroreduction. In this way, the LSPR can be varied from 680 nm to 580 nm with a concomitant marked evolution of the full-width at half-maximum from 200 to 80 nm. An important result is that the LSPR of substrates generated at -0.9 V using a charge density of 20 mC cm (2) is close to that of AuNP gratings obtained using e-beam lithography. In a second step, the best AuNPmodified electrodes were covered with an ultrathin organic film of bisthienylbenzene (BTB) generated by electroreduction of the corresponding diazonium salt. This film switches between a conducting and an insulating state depending on the applied voltage. The effect of the switch on the plasmonic properties of AuNPs is reported. Despite the small thickness of the film (below 15 nm), its conductance switch leads to a reversible modulation of the LSPR intensity by as much as 25%. (C) 2015 Elsevier Ltd. All rights reserved.
机译:这项工作描述了一种用于产生金等离子体电极的快速电沉积方法及其作为有源等离子体装置的用途。使用计时电流法对Au-III盐进行电还原,可以很容易地在铟锡氧化物(ITO)电极上的大面积(高达几平方厘米)上获得金纳米颗粒(AuNPs)。这些AuNP基板在可见光范围内表现出较强的局部表面等离子体共振(LSPR)信号,并构成了低成本的等离子体电极。扫描电子显微镜(SEM)可以看到AuNPs的平均大小,密度和分散度,可以通过电还原过程中施加的电势来调节。这样,LSPR可以在680nm至580nm范围内变化,同时半峰全宽从200nm到80nm都有明显的变化。一个重要的结果是,使用20 mC cm(2)的电荷密度在-0.9 V下生成的基板的LSPR接近于使用电子束光刻获得的AuNP光栅的LSPR。在第二步中,最好的AuNP修饰的电极覆盖有通过对相应的重氮盐进行电还原而生成的双噻吩基苯(BTB)的超薄有机膜。该膜根据所施加的电压在导通和绝缘状态之间切换。据报道,该开关对AuNPs的等离子体特性的影响。尽管薄膜的厚度很小(低于15 nm),但其电导率开关却导致LSPR强度的可逆调制高达25%。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号