首页> 外文期刊>Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics >Theoretical study of pyrazolate-bridged dinuclear platinum(II) complexes: Interesting potential energy curve of the lowest energy triplet excited state and phosphorescence spectra
【24h】

Theoretical study of pyrazolate-bridged dinuclear platinum(II) complexes: Interesting potential energy curve of the lowest energy triplet excited state and phosphorescence spectra

机译:吡唑基桥联双核铂(II)配合物的理论研究:最低能量三重态激发态的有趣势能曲线和磷光光谱

获取原文
获取原文并翻译 | 示例
           

摘要

Four kinds of 3,5-dialqpyrazolate(R(2)pz)-bridged dinuclear platinum(II) complexes [Pt-2(mu-R(2)PZ)(2)(dfPPY)(2)] (dfppy = 2-(2,4-difluorophenyl)pyridine; R(2)PZ = pyrazolate in 1, 3,5-dimethylpyrazolate in 2, 3-methyl-5-tert-butylpyrazolate in 3, and 3,5-bis(tert-butyl)pyrazolate in 4) were theoretically investigated by the DFT(B3PW91) method. The Stokes shift of their phosphorescence spectra was discussed on the basis of the potential energy curve (PEC) of the lowest energy triplet excited state (T-1). This PEC significantly depends on the bulkiness of substituents on pz. In 1 and 2, bearing small substituents on pz, one local minimum is present in the T, state besides a global minimum. The local minimum geometry is similar to the So-equilibrium one. The T, state at this local minimum is characterized as the,pi,pi* excited state in dfppy, where the d pi orbital of Pt participates in this excited state through an antibonding interaction with the pi orbital of dfppy; in other words, this triplet excited state is assigned as the mixture of the ligand-centered pi,pi* excited and metal-to-ligand charge transfer excited state ((LC)-L-3/MLCT). The geometry of the T-1-global minimum is considerably different from the So-equilibrium one. The T, state at the global minimum is characterized as the triplet metal-metal-to-ligand charge transfer ((MMLCT)-M-3) excited state, which is formed by the one-electron excitation from the d sigma-d sigma antibonding orbital to the pi* orbital of dfppy. Because of the presence of the local minimum, the geometry change in the T, state is suppressed in polystyrene at room temperature (FIT) and frozen 2-methyltetrahydrofuran (2-MeTHF) at 77 K. As a result, the energy of phosphorescence is almost the same in these solvents. In fluid 2-MeTHF at FIT, on the other hand, the geometry of the T, state easily reaches the T-1-global minimum. Because the T-1-global minimum geometry is considerably different from the So-equilibrium one, the phosphorescence occurs at considerably low energy. These are the reasons why the Stokes shift is very large in fluid 2-MeTHF but small in polystyrene and frozen 2-MeTHF. In 3 and 4, bearing bulky tert-butyl substituents on pz, only the T-1-global minimum is present but the local minimum is not. The electronic structure of this T-1-global minimum is assigned as the (MMLCT)-M-3 excited state like 1 and 2. Though frozen 2-MeTHF suppresses the geometry change of 3 and 4 in the T, state, their geometries moderately change in polystyrene because of the absence of the T-1-local minimum. As a result, the energy of phosphorescence is moderately lower in polystyrene than in frozen 2-MeTHF. The T-1-global minimum geometry is much different from the So-equilibrium one in 3 but moderately different in 4, which is interpreted in terms of the symmetries of these complexes and the steric repulsion between the tert-butyl group on pz and dfppy. Thus, the energy of phosphorescence of 3 is much lower in fluid 2-MeTHF than in frozen 2-MeTHF like 1 and 2 but that of 4 is moderately lower; in other words, the Stokes shift in fluid 2-MeTHF is small only in 4.
机译:三种3,5-二氮杂吡唑酸酯(R(2)pz)桥联的双核铂(II)配合物[Pt-2(mu-R(2)PZ)(2)(dfPPY)(2)](dfppy = 2 -(2,4-二氟苯基)吡啶; R(2)PZ = 1、3,5-二甲基吡唑酸酯,2、3-甲基-5-叔丁基吡唑酸酯,3和3,5-双(叔丁基),1、3,5-二甲基吡唑酸酯中的吡唑酸酯用DFT(B3PW91)方法对4)中的吡唑酸酯进行了理论研究。根据最低能量三重态激发态(T-1)的势能曲线(PEC),讨论了其磷光光谱的斯托克斯位移。该PEC明显取决于pz上取代基的体积。在1和2中,在pz上带有小的取代基,除了全局最小值之外,T,状态还存在一个局部最小值。局部最小几何形状类似于So-balance之一。在该局部最小值处的T状态表征为dfppy中的pi,pi *激发态,其中Pt的d pi轨道通过与dfppy的pi轨道的抗键相互作用参与该激发态。换句话说,该三重态激发态被指定为以配体为中心的pi,pi *激发态和金属-配体电荷转移激发态((LC)-L-3 / MLCT)的混合物。 T-1全局极小值的几何与So-balance极小。处于全局最小值的T状态表征为三重态金属-金属到配体的电荷转移((MMLCT)-M-3)激发态,它是由d sigma-d sigma的单电子激发形成的与dfppy的pi *轨道形成反键轨道。由于存在局部最小值,因此在室温(FIT)的聚苯乙烯和在77 K的冷冻2-甲基四氢呋喃(2-MeTHF)中,T,几何形状的变化受到抑制。结果,磷光的能量为这些溶剂几乎相同。另一方面,在FIT的流体2-MeTHF中,T的几何形状很容易达到T-1全局最小值。由于T-1全局最小几何形状与So平衡几何形状完全不同,因此磷光会以相当低的能量发生。这就是为什么在流体2-MeTHF中斯托克斯位移很大,而在聚苯乙烯和冷冻的2-MeTHF中斯托克斯位移很小的原因。在3和4中,在pz上带有庞大的叔丁基取代基,仅存在T-1-global最小值,而没有局部最小值。 T-1全局极小值的电子结构被指定为(MMLCT)-M-3激发态,如1和2。尽管冻结的2-MeTHF抑制了T态中3和4的几何形状变化,但它们的几何形状由于没有T-1局部最小值,因此聚苯乙烯适度变化。结果,与冷冻的2-MeTHF相比,聚苯乙烯中的磷光能量适度降低。 T-1-整体最小几何与So平衡的差异十分之三,而在4中则略有不同,这是根据这些配合物的对称性以及pz和dfppy上叔丁基之间的空间排斥来解释的。因此,在流体2-MeTHF中3的磷光能量比在冷冻的2-MeTHF中1和2的磷光能量低得多,而在4-MeTHF中4的磷光能量则较低。换句话说,流体2-MeTHF中的斯托克斯位移仅在4中很小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号