首页> 外文期刊>Analytical chemistry >Isotopic Studies of Metabolic Systems by Mass Spectrometry: Using Pascal's Triangle To Produce Biological Standards with Fully Controlled Labeling Patterns
【24h】

Isotopic Studies of Metabolic Systems by Mass Spectrometry: Using Pascal's Triangle To Produce Biological Standards with Fully Controlled Labeling Patterns

机译:质谱系统对代谢系统的同位素研究:使用帕斯卡三角形生成具有完全受控标记模式的生物标准品

获取原文
获取原文并翻译 | 示例
       

摘要

Mass spectrometry (MS) is widely used for isotopic studies of metabolism in which detailed information about biochemical processes is obtained from the analysis of isotope incorporation into metabolites. The biological value of such experiments is dependent on the accuracy of the isotopic measurements. Using MS, isotopologue distributions are measured from the quantitative analysis of isotopic clusters. These measurements are prone to various biases, which can occur during the experimental workflow and/or MS analysis. The lack of relevant standards limits investigations of the quality of the measured isotopologue distributions. To meet that need, we developed a complete theoretical and experimental framework for the biological production of metabolites with fully controlled and predictable labeling patterns. This strategy is valid for different isotopes and different types of metabolisms and organisms, and was applied to two model microorganisms, Pichia augusta and Escherichia coli, cultivated on ~(13)C-labeled methanol and acetate as sole carbon source, respectively. The isotopic composition of the substrates was designed to obtain samples in which the isotopologue distribution of all the metabolites should give the binomial coefficients found in Pascal's triangle. The strategy was validated on a liquid chromatography-tandem mass spectrometry (LC-MS/MS) platform by quantifying the complete isotopologue distributions of different intracellular metabolites, which were in close agreement with predictions. This strategy can be used to evaluate entire experimental workflows (from sampling to data processing) or different analytical platforms in the context of isotope labeling experiments.
机译:质谱(MS)广泛用于代谢的同位素研究,其中有关同位素结合入代谢产物的分析获得了有关生化过程的详细信息。这种实验的生物学价值取决于同位素测量的准确性。使用MS,从同位素簇的定量分析中测量同位素同位素分布。这些测量容易产生各种偏差,这些偏差可能会在实验工作流程和/或MS分析期间发生。缺乏相关标准限制了对测得的同位素同位素分布质量的研究。为了满足这一需求,我们开发了具有完全可控和可预测标记模式的代谢物生物生产的完整理论和实验框架。该策略适用于不同的同位素和不同类型的代谢和生物,并应用于分别在〜(13)C标记的甲醇和乙酸盐作为唯一碳源的条件下培养的两种典型微生物,奥古斯塔毕赤酵母和大肠杆菌。设计底物的同位素组成,以获取样品,其中所有代谢物的同位素同位素分布应给出在帕斯卡三角形中发现的二项式系数。通过量化不同细胞内代谢产物的完全同位素分布,在液相色谱-串联质谱(LC-MS / MS)平台上验证了该策略,该预测与预测相符。该策略可用于评估整个实验工作流程(从采样到数据处理)或在同位素标记实验的背景下评估不同的分析平台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号