首页> 外文期刊>Analytical chemistry >Increased Robustness of Single-Molecule Counting with Microfluidics, Digital Isothermal Amplification, and a Mobile Phone versus Real-Time Kinetic Measurements
【24h】

Increased Robustness of Single-Molecule Counting with Microfluidics, Digital Isothermal Amplification, and a Mobile Phone versus Real-Time Kinetic Measurements

机译:微流控,数字等温扩增和移动电话与实时动力学测量相比,提高了单分子计数的鲁棒性

获取原文
获取原文并翻译 | 示例
           

摘要

Quantitative bioanalytical measurements are commonly performed in a kinetic format and are known to not be robust to perturbation that affects the kinetics itself or the measurement of kinetics. We hypothesized that the same measurements performed in a "digital" (single-molecule) format would show increased robustness to such perturbations. Here, we investigated the robustness of an amplification reaction (reverse-transcription loop-mediated amplification, RT-LAMP) in the context of fluctuations in temperature and time when this reaction is used for quantitative measurements of HIV-1 RNA molecules under limited-resource settings (LRS). The digital format that counts molecules using dRT-LAMP chemistry detected a 2-fold change in concentration of HIV-1 RNA despite a 6℃ temperature variation (p-value = 6.7 × 10~(-7)), whereas the traditional kinetic (real-time) format did not (p-value = 0.25). Digital analysis was also robust to a 20 min change in reaction time, to poor imaging conditions obtained with a consumer cell-phone camera, and to automated cloud-based processing of these images (R~2 = 0.9997 vs true counts over a 100-fold dynamic range). Fluorescent output of multiplexed PCR amplification could also be imaged with the cell phone camera using flash as the excitation source. Many nonlinear amplification schemes based on organic, inorganic, and biochemical reactions have been developed, but their robustness is not well understood. This work implies that these chemistries may be significantly more robust in the digital, rather than kinetic, format. It also calls for theoretical studies to predict robustness of these chemistries and, more generally, to design robust reaction architectures. The SlipChip that we used here and other digital microfluidic technologies already exist to enable testing of these predictions. Such work may lead to identification or creation of robust amplification chemistries that enable rapid and precise quantitative molecular measurements under LRS. Furthermore, it may provide more general principles describing robustness of chemical and biological networks in digital formats.
机译:定量生物分析测量通常以动力学形式进行,并且已知对影响动力学本身或动力学测量的摄动不可靠。我们假设以“数字”(单分子)格式执行的相同测量将显示出对此类干扰的增强的鲁棒性。在这里,我们研究了在温度和时间波动的情况下扩增反应(逆转录环介导的扩增,RT-LAMP)在有限资源下用于HIV-1 RNA分子的定量测量时的鲁棒性设置(LRS)。尽管温度变化为6℃(p值= 6.7×10〜(-7)),但使用dRT-LAMP化学方法对分子进行计数的数字格式检测到的HIV-1 RNA浓度变化了2倍(p值= 6.7×10〜(-7)),而传统的动力学方法是实时)格式(p值= 0.25)。对于20分钟的反应时间变化,使用便携式手机相机获得的不良成像条件以及对这些图像进行基于云的自动处理(R〜2 = 0.9997,而真实计数超过100-折叠动态范围)。使用闪光灯作为激发源,手机摄像头也可以对多重PCR扩增的荧光输出进行成像。已经开发了许多基于有机,无机和生化反应的非线性扩增方案,但其健壮性尚不十分清楚。这项工作表明,这些化学物质可能在数字形式而非动力学形式方面更加强大。它还要求进行理论研究,以预测这些化学物质的稳健性,更普遍的是,设计稳健的反应体系。我们在这里使用的SlipChip和其他数字微流体技术已经存在,可以测试这些预测。此类工作可能会导致鉴定或创建可靠的扩增化学,从而能够在LRS下进行快速准确的定量分子测量。此外,它可以提供更通用的原理来描述数字格式的化学和生物网络的健壮性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号