首页> 外文期刊>Analytical chemistry >Alternate Dissociation Pathways Identified in Charge-Reduced Protein Complex Ions
【24h】

Alternate Dissociation Pathways Identified in Charge-Reduced Protein Complex Ions

机译:减少电荷的蛋白质复合物离子中鉴定出的替代解离途径

获取原文
获取原文并翻译 | 示例
       

摘要

Tandem mass spectrometry (MS) of large protein complexes has proven to be capable of assessing the stoichiometry, connectivity, and structural details of multiprotein assemblies. While the utility of tandem MS is without question, a deeper understanding of the mechanism of protein complex dissociation will undoubtedly drive the technology into new areas of enhanced utility and information content. We present here the systematic analysis of the charge state dependent decay of the noncovalently associated complex of human transthyretin, generated by collision-induced dissociation (CID). A crown ether based charge reduction approach was applied to generate intact transthyretin tetramers with charge states ranging from 15+ to 7+. These nine charge states were subsequently analyzed by means of tandem MS and ion mobility spectrometry. Three different charge-dependent mechanistic regimes were identified: (1) common asymmetric dissociation involving ejection of unfolded monomers, (2) expulsion of folded monomers from the intact tetramer, and (3) release of C-terminal peptide fragments from the intact complex. Taken together, the results presented highlight the potential of charge state modulation as a method for directing the course of gas-phase dissociation and unfolding of protein complexes.
机译:大型蛋白质复合物的串联质谱(MS)已被证明能够评估多蛋白质装配体的化学计量,连通性和结构细节。尽管串联质谱仪的实用性毫无疑问,但对蛋白质复合物解离机理的更深入的了解无疑将使该技术进入增强实用性和信息含量的新领域。我们在这里提出系统的分析的人类运甲状腺素蛋白的非共价结合复合物的电荷状态依赖的衰变,这是由碰撞诱导解离(CID)产生的。应用基于冠醚的电荷减少方法来生成完整的运甲状腺素蛋白四聚体,其电荷状态范围为15+至7+。随后通过串联质谱和离子迁移谱分析了这九种电荷状态。确定了三种不同的电荷依赖性机理:(1)常见的不对称解离,涉及未折叠单体的排出;(2)从完整四聚体中排出折叠的单体;(3)从完整复合物中释放C端肽片段。两者合计,提出的结果突出了电荷状态调制作为指导气相解离和蛋白质复合物展开过程的方法的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号