首页> 外文期刊>Analytical chemistry >High-Resolution Microspectroscopy of Plasmonic Nanostructures for Miniaturized Biosensing
【24h】

High-Resolution Microspectroscopy of Plasmonic Nanostructures for Miniaturized Biosensing

机译:等离子体纳米结构的高分辨率显微技术,用于小型化生物传感

获取原文
获取原文并翻译 | 示例
       

摘要

In this article, we demonstrate how to perform microscale spectroscopy of plasmonic nanostructures in order to minimize the noise when determining the resonance peak wavelength. This is accomplished using an experimental setup containing standard optical components mounted on an ordinary light microscope. We present a detailed comparison between extinction spectroscopy in transmission mode and scattering spectroscopy under dark field illumination, which shows that extinction measurements provide higher signal-to-noise in almost all situations. Furthermore, it is shown that rational selection of nano-structure, hardware components, and data analysis algorithms enables tracking of the particle plasmon resonance wavelength from a 10 (mu)m X 50 (mu)m area with a resolution of 10~(-3) nm in transmission mode. We investigate how the temporal resolution, which can be improved down to 17 ms, affects the noise characteristics. In addition, we show how data can be acquired from an area as small as 2 (mu)m X 10 (mu)m (approx240 particles) at the expense of higher noise on longer time scales. In comparison with previous work on macroscopic sensor designs, this represents a sensor miniaturization of 5 orders of magnitude, without any loss in signal-to-noise performance. As a model system, we illustrate biomolecular detection using gold nanodisks prepared by colloidal lithography. The microextinction measurements of nanodisks described here provide detection of protein surface coverages as low as 40 pg/cm~(2) (<0.1percent of saturated binding). In fact, the miniaturized system provides a detection limit in terms of surface coverage comparable to state of the art macroscopic sensors, while simultaneously being as close to single protein molecule detection as sensors based on a single nanoparticle.
机译:在本文中,我们演示如何在确定共振峰波长时对等离子体纳米结构进行微尺度光谱分析,以使噪声最小化。这是使用包含安装在普通光学显微镜上的标准光学组件的实验装置完成的。我们在透射模式下的消光光谱与暗场照明下的散射光谱之间进行了详细的比较,这表明消光测量几乎在所有情况下均提供了更高的信噪比。此外,结果表明,合理选择纳米结构,硬件组件和数据分析算法,可以从10μmX 50μm区域以10〜(-)的分辨率跟踪粒子等离子体共振波长。 3)在传输模式下为nm。我们研究了可以降低到17 ms的时间分辨率如何影响噪声特性。此外,我们展示了如何从小至2μmX10μm(约240个粒子)的区域中获取数据,而在较长的时间尺度上却以较高的噪声为代价。与以前有关宏观传感器设计的工作相比,这代表了传感器微型化了5个数量级,而信噪比性能没有任何损失。作为模型系统,我们说明了使用通过胶体光刻制备的金纳米盘进行生物分子检测。此处描述的纳米盘的微消光测量提供了低至40 pg / cm〜(2)(<饱和结合的0.1%)的蛋白质表面覆盖率检测。实际上,小型化系统在表面覆盖范围方面提供了与现有技术的宏观传感器相当的检测极限,同时与基于单个纳米粒子的传感器一样接近单个蛋白质分子的检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号