首页> 外文期刊>American Journal of Physiology >Loading effect of fibroblast-myocyte coupling on resting potential, impulse propagation, and repolarization: insights from a microstructure model
【24h】

Loading effect of fibroblast-myocyte coupling on resting potential, impulse propagation, and repolarization: insights from a microstructure model

机译:成纤维细胞-心肌细胞偶联对静息电位,冲动传播和复极化的负荷作用:微观结构模型的见解

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The numerous nonmyocytes present within the myocardium may establish electrical connections with myocytes through gap junctions, formed naturally or as a result of a cell therapy. The strength of the coupling and its potential impact on action potential characteristics and conduction are not well understood. This study used computer simulation to investigate the load-induced electrophysiological consequences of the coupling of myocytes with fibroblasts, where the fibroblast resting potential, density, distribution, and coupling strength were varied. Conduction velocity (CV), upstroke velocity, and action potential duration (APD) were analyzed for longitudinal and transverse impulse propagation in a two-dimensional microstructure tissue model, developed to represent a monolayer culture of cardiac cells covered by a layer of fibroblasts. The results show that 1) at weak coupling (<0.25 nS), the myocyte resting potential was elevated, leading to CV up to 5% faster than control; 2) at intermediate coupling, the myocyte resting potential elevation saturated, whereas the current flowing from the myocyte to the fibroblast progressively slowed down both CV and upstroke velocity; 3) at strong couplings (>8 nS), all of the effects saturated; and 4) APD at 90% repolarization was usually prolonged by 0-20 ms (up to 60-80 ms for high fibroblast density and coupling) by the coupling to fibroblasts. The changes in APD depended on the fibroblast resting potential. This complex, coupling-dependent interaction of fibroblast and myocytes also has relevance to the integration of other nonmyocytes in the heart, such as those used in cellular therapies.
机译:心肌内存在的大量非肌细胞可以通过天然形成的或由于细胞疗法而形成的间隙连接与肌细胞建立电连接。耦合的强度及其对动作电位特性和传导的潜在影响尚不十分清楚。这项研究使用计算机仿真来研究负荷诱导的心肌细胞与成纤维细胞耦合的电生理后果,其中成纤维细胞的静息电位,密度,分布和耦合强度各不相同。在二维微结构组织模型中分析了传导速度(CV),上冲速度和动作电位持续时间(APD)的纵向和横向脉冲传播,该模型开发为代表由成纤维细胞层覆盖的心脏细胞的单层培养。结果表明:1)在弱偶联(<0.25 nS)时,心肌细胞静息电位升高,导致CV比对照组快5%。 2)在中间偶联时,肌细胞静息电位升高饱和,而从肌细胞流向成纤维细胞的电流逐渐降低CV和上冲程速度。 3)在强耦合(> 8 nS)下,所有影响均饱和; 4)90%复极化的APD通常通过与成纤维细胞偶联而延长0-20毫秒(对于高成纤维细胞密度和偶联,最长可达60-80毫秒)。 APD的变化取决于成纤维细胞的静息潜力。成纤维细胞和心肌细胞的这种复杂的,依赖耦合的相互作用也与心脏中其他非肌细胞的整合有关,例如细胞疗法中所用的那些。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号