...
首页> 外文期刊>American Journal of Physiology >High glucose-induced oxidative stress inhibits Na+/glucose cotransporter activity in renal proximal tubule cells.
【24h】

High glucose-induced oxidative stress inhibits Na+/glucose cotransporter activity in renal proximal tubule cells.

机译:高葡萄糖诱导的氧化应激会抑制肾近端小管细胞中的Na + /葡萄糖共转运蛋白活性。

获取原文
获取原文并翻译 | 示例
           

摘要

Oxidative stress plays an important role in the pathogenesis of renal diseases such as diabetic nephropathy. The metabolism of excessive intracellular glucose may involve a number of processes. One consequence of excessive intracellular glucose levels is an increased rate of oxidative phosphorylation under hyperglycemic conditions, whereas another consequence is an increase in the metabolism of glucose to sorbitol by aldose reductase. In addition, hyperglycemia may result in the activation of NADPH oxidase, the production of superoxide anion, and hydrogen peroxide (H2O2). In this report, we investigate the mechanisms responsible for the H2O2 production that occurs as the consequence of hyperglycemia and the effect of H2O2 on the activity of the Na+/glucose cotransport system (SGLT) in primary cultures of renal proximal tubule cells (PTCs). When primary PTCs were cultured in the presence of high glucose, one consequence was that the Na+/glucose cotransport system was inhibited, as indicated by uptake studies utilizing alpha-methyl-D-glucoside (alpha-MG), a nonmetabolizable analog of D-glucose. Pretreatment of the cultures with either 1) aminoguanidine or pyridoxamine [inhibitors of the accumulation of advanced glycation end products (AGEs)], 2) rotenone (an inhibitor of the mitochondrial electron transport chain), or 3) apocynin or diphenylene iodonium (DPI; inhibitors of NADPH oxidase) blocked the observed changes that occurred as a consequence of the incubation of the PTCs with high glucose. Included among these changes were the observed increase in H2O2 levels, as well as an increase in lipid peroxide production, and a decrease both in the activity of catalase and in the level of glutathione (GSH), endogenous antioxidants. The high glucose-induced decrease in the level of the Na+/glucose cotransporter was similarly prevented by either aminoguanidine, rotenone, or apocynin. Thus the inhibitory effect of high glucose on both the level of the Na+/glucose cotransport system and the activity of the Na+/glucose cotransport system can be explained, at least in part, as being due to the effects of the H2O2, the consequent formation of AGEs, the increase in mitochondrial metabolism, and in NADPH oxidase activity in the PTCs. Other related changes observed in the PTCs that could be reversed by treatment with either aminoguanidine, pyridoxamine, rotenone, apocynin, or DPI included an increase in transforming growth factor-beta1 secretion and the activation of the NF-kappaB signal transduction pathway.
机译:氧化应激在诸如糖尿病性肾病的肾脏疾病的发病机理中起重要作用。过量的细胞内葡萄糖的代谢可能涉及许多过程。过量的细胞内葡萄糖水平的一个结果是在高血糖条件下氧化磷酸化的速率增加,而另一结果是醛糖还原酶使葡萄糖向山梨糖醇的代谢增加。此外,高血糖症可能会导致NADPH氧化酶活化,产生超氧阴离子和过氧化氢(H2O2)。在本报告中,我们研究了由高血糖引起的H2O2产生的机制,以及H2O2对肾近端小管细胞(PTC)的原代培养中Na + /葡萄糖共转运系统(SGLT)活性的影响。当在高葡萄糖存在下培养初级PTC时,其后果是Na + /葡萄糖共转运系统受到抑制,这是利用α-甲基-D-葡萄糖苷(α-MG)(一种不可代谢的D-类似物)进行的摄取研究表明的葡萄糖。用1)氨基胍或吡ido胺[高级糖基化终产物(AGEs)积累的抑制剂],2)鱼藤酮(线粒体电子传输链的抑制剂)或3)阿朴西宁或二亚苯基碘鎓(DPI)预处理培养物。 NADPH氧化酶抑制剂)可阻止观察到的变化,这些变化是由于PTC与高葡萄糖温育而发生的。这些变化包括观察到的H2O2水平增加以及脂质过氧化物产量的增加,以及过氧化氢酶活性和内源性抗氧化剂谷胱甘肽(GSH)水平的下降。氨基胍,鱼藤酮或载脂蛋白类似地阻止了高葡萄糖诱导的Na + /葡萄糖共转运蛋白水平的降低。因此,可以至少部分地解释高葡萄糖对Na + /葡萄糖共转运系统的水平和Na + /葡萄糖共转运系统的活性的抑制作用,这是由于H 2 O 2的作用,因此形成的。年龄,PTC中线粒体代谢的增加以及NADPH氧化酶活性的增加。通过用氨基胍,吡ido胺,鱼藤酮,载脂蛋白或DPI处理可以逆转的PTC中观察到的其他相关变化包括转化生长因子β1分泌的增加和NF-κB信号转导途径的激活。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号