...
首页> 外文期刊>American Journal of Physiology >A mathematical model of rat distal convoluted tubule. I. Cotransporter function in early DCT.
【24h】

A mathematical model of rat distal convoluted tubule. I. Cotransporter function in early DCT.

机译:大鼠远曲小管的数学模型。 I.早期DCT中的协同转运蛋白功能。

获取原文
获取原文并翻译 | 示例

摘要

A model of rat early distal convoluted tubule (DCT) is developed in conjunction with a kinetic representation of the thiazide-sensitive NaCl cotransporter (TSC). Realistic constraints on cell membrane electrical conductance require that most of the peritubular Cl(-) reabsorption proceeds via a KCl cotransporter,along with most of the K(+) recycled from the Na-K-ATPase. The model tubule reproduces the saturable Cl(-) reabsorption of DCT but not the micropuncture finding of linear Na(+) flux in response to load, more likely a feature of late DCT (CNT). As in proximal tubule, early DCT HCO(3)(-) reabsorption is mediated by a luminal Na(+)/H(+) exchanger (NHE), but in contrast to proximal tubule, the DCT exchanger is operating closer to equilibrium. In the model DCT, two consequences of the lesser driving force for NHE exchange are an acidic cytosol and wider swings in NHE flux with perturbations of luminal composition. Variations in luminal NaCl provide a challenge to cell volume, which can be blunted by volume dependence of the KCl cotransporter. Cell swelling can also be induced by increases in peritubular K(+) concentration. In this case, volume-dependent inhibition of TSC could provide volume homeostasis that also enhances distal Na(+) delivery, and ultimately enhances renal K(+) excretion. In the model DCT, proton secretion is blunted by peritubular HCO(3)(-), so that there is little contribution by this segment to the maintenance of metabolic alkalosis. During alkalosis, the model predicts that increasing luminal NaCl concentration enhances NHE flux, so that these calculations provide no support for a role of early DCT in recovery from Cl(-) depletion alkalosis.
机译:结合噻嗪类敏感性NaCl共转运蛋白(TSC)的动力学表示,开发了大鼠早期远端回旋小管(DCT)模型。对细胞膜电导的现实限制要求,大部分肾小管周围的Cl(-)重吸收是通过KCl共转运蛋白进行的,以及从Na-K-ATPase回收的大部分K(+)。模型小管可重现DCT的可饱和Cl(-)重吸收,但不能响应负载而微针发现线性Na(+)通量,这很可能是后期DCT(CNT)的特征。与近端小管一样,早期的DCT HCO(3)(-)重吸收是由腔内Na(+)/ H(+)交换器(NHE)介导的,但与近端小管相反,DCT交换器的运行更接近平衡。在DCT模型中,用于NHE交换的驱动力较小的两个结果是酸性胞浆和NHE通量的较大波动,并伴有管腔成分的扰动。内腔NaCl的变化对细胞体积提出了挑战,这可能因KCl共转运蛋白的体积依赖性而减弱。细胞肿胀也可以通过增加肾小管周K(+)浓度来诱导。在这种情况下,TSC的体积依赖性抑制作用可以提供体积稳态,这也可以增强远端Na(+)的传递,并最终增强肾脏K(+)的排泄。在DCT模型中,质子分泌受到肾小管周围HCO(3)(-)的影响,因此该段对维持代谢性碱中毒的贡献很小。在碱中毒期间,该模型预测增加的腔NaCl浓度会增加NHE通量,因此这些计算不支持早期DCT在从Cl(-)耗尽碱中毒恢复中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号