首页> 外文期刊>ACS applied materials & interfaces >High-Performance Microchanneled Asymmetric Gd0.1Ce0.9O1.95-delta-La0.6Sr0.4FeO3-delta-Based Membranes for Oxygen Separation
【24h】

High-Performance Microchanneled Asymmetric Gd0.1Ce0.9O1.95-delta-La0.6Sr0.4FeO3-delta-Based Membranes for Oxygen Separation

机译:高性能微通道不对称Gd0.1Ce0.9O1.95-delta-La0.6Sr0.4FeO3-delta基膜的氧分离

获取原文
获取原文并翻译 | 示例
           

摘要

A microchanneled asymmetric dual phase composite membrane of 70 vol % Gd0.1Ce0.9O1.95-delta-30 vol % La0.6Sr0.4FeO3-delta (CGO-LSF) was fabricated by a "one step" phase-inversion tape casting. The sample consists of a thin dense membrane (100 mu m) and a porous substrate including "finger-like" microchannels. The oxygen permeation flux through the membrane with and without catalytic surface layers was investigated under a variety of oxygen partial pressure gradients. At 900 degrees C, the oxygen permeation flux of the bare membrane was 1.6 (STP) ml cm(-2) min(-1) for the air/He-case and 10.10 (STP) ml cm(-2) min(-1) for the air/CO-case. Oxygen, flux measurements as well as electrical conductivity relaxation show that the oxygen flux through the bare membrane without catalyst is limited by the oxygen surface exchange. The surface exchange can be enhanced by introduction of catalyst on the membrane surface. An increase of the 50 150 oxygen flux of-4.49 (STP) mL cm(-2) min(-1) at 900 degrees C was observed when catalyst is added for the air/He-case. Mass transfer polarization through the finger-like support was confirmed to be negligible, which benefits the overall performance. A stable flux of 7.00 (STP) ml cm(-2) min(-1) was observed between air/CO/CO2 over 200 h at 850 degrees C. Partial surface decomposition was observed on the permeate side exposed to CO, in line with predictions from thermodynamic calculations. In a mixture of CO, CO2, H-2, and H2O at similar oxygen activity the material will according to the calculation not decompose. The microchanneled asymmetric CGO-LSF membranes show high oxygen permeability and chemical stability under a range of technologically relevant oxygen potential gradients.
机译:通过“一步式”相转化带铸造法制备了70vol%的Gd0.1Ce0.9O1.95-δ-30vol%的La0.6Sr0.4FeO3-δ的微通道不对称双相复合膜(CGO-LSF)。样品由薄的致密膜(100微米)和包括“手指状”微通道的多孔基质组成。在各种氧气分压梯度下,研究了有和没有催化表面层时穿过膜的氧气渗透通量。在900摄氏度下,对于空气/氦气情况,裸膜的氧气渗透通量为1.6(STP)ml cm(-2)min(-1)和10.10(STP)ml cm(-2)min(- 1)对于空气/ CO机箱。氧气,通量测量以及电导率松弛表明,在没有催化剂的情况下通过裸膜的氧气通量受到氧气表面交换的限制。通过在膜表面上引入催化剂可以增强表面交换。当为空气/氦气箱添加催化剂时,在900摄氏度下观察到50 150的氧气通量增加了4.49(STP)mL cm(-2)min(-1)。通过手指状支持物的传质极化被确认可以忽略不计,这有利于整体性能。在850摄氏度下200小时内在空气/ CO / CO2之间观察到7.00(STP)ml cm(-2)min(-1)的稳定通量。在暴露于CO的渗透侧,观察到部分表面分解。根据热力学计算得出的预测。在具有相似氧活度的CO,CO2,H-2和H2O的混合物中,根据计算,材料将不会分解。微通道不对称CGO-LSF膜在一系列技术相关的氧势梯度下显示出高的透氧性和化学稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号