...
首页> 外文期刊>ACS applied materials & interfaces >Investigating Water Splitting with CaFe2O4 Photocathodes by Electrochemical Impedance Spectroscopy
【24h】

Investigating Water Splitting with CaFe2O4 Photocathodes by Electrochemical Impedance Spectroscopy

机译:CaFe2O4光电阴极的水分解电化学阻抗谱研究

获取原文
获取原文并翻译 | 示例

摘要

Artificial photosynthesis constitutes one of the most promising alternatives for harvesting solar energy in the form of fuels, such as hydrogen. Among the different devices that could be developed to achieve efficient water photosplitting, tandem photoelectrochemical cells show more flexibility and offer high theoretical conversion efficiency. The development of these cells depends on finding efficient and stable photoanodes and, particularly, photocathodes, which requires having reliable information on the mechanism of charge transfer at the semiconductor/solution interface. In this context, this work deals with the preparation of thin film calcium ferrite electrodes and their photoelectrochemical characterization for hydrogen generation by means of electrochemical impedance spectroscopy (EIS). A fully theoretical model that includes elementary steps for electron transfer to the electrolyte and surface recombination with photogenerated holes is presented. The model also takes into account the complexity of the semiconductor/solution interface by including the capacitances of the space charge region, the surface states and the Helmholtz layer (as a constant phase element). After illustrating the predicted Nyquist plots in a general manner, the experimental results for calcium ferrite electrodes at different applied potentials and under different illumination intensities are fitted to the model. The excellent agreement between the model and the experimental results is illustrated by the simultaneous fit of both Nyquist and Bode plots. The concordance between both theory and experiments allows us to conclude that a direct transfer of electrons from the conduction band to water prevails for hydrogen photogeneration on calcium ferrite electrodes and that most of the carrier recombination occurs in the material bulk. In more general vein, this study illustrates how the use of EIS may provide important clues about the behavior of photoelectrodes and the main strategies for their improvement.
机译:人工光合作用构成了以氢等燃料形式收集太阳能的最有希望的替代方法之一。在可以实现高效率水分光的不同设备中,串联光电化学电池显示出更大的灵活性,并提供了很高的理论转化效率。这些电池的开发取决于找到有效且稳定的光阳极,尤其是光阴极,这需要具有关于半导体/溶液界面处的电荷转移机制的可靠信息。在此背景下,这项工作涉及薄膜铁氧体钙电极的制备及其通过电化学阻抗谱法(EIS)进行生氢的光电化学表征。提出了一个完整的理论模型,其中包括将电子转移到电解质以及与光生空穴进行表面复合的基本步骤。该模型还通过包括空间电荷区域,表面状态和亥姆霍兹层(作为恒定相元素)的电容来考虑半导体/溶液界面的复杂性。在以一般方式说明了预测的奈奎斯特图之后,将在不同施加电势和不同光照强度下的铁氧体钙电极的实验结果拟合到模型中。 Nyquist图和Bode图的同时拟合说明了模型与实验结果之间的出色一致性。理论和实验之间的一致性使我们可以得出结论,电子从导带到水的直接转移占主导地位,从而在钙铁氧体电极上产生氢光生氢,大多数载流子复合发生在材料块中。从更普遍的角度来看,这项研究说明了EIS的使用如何为光电极的行为及其改善的主要策略提供重要线索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号