首页> 外文期刊>ACS applied materials & interfaces >Polybenzimidazole Block Copolymers for Fuel Cell: Synthesis and Studies of Block Length Effects on Nanophase Separation, Mechanical Properties, and Proton Conductivity of PEM
【24h】

Polybenzimidazole Block Copolymers for Fuel Cell: Synthesis and Studies of Block Length Effects on Nanophase Separation, Mechanical Properties, and Proton Conductivity of PEM

机译:燃料电池用聚苯并咪唑嵌段共聚物:嵌段长度对PEM纳米相分离,机械性能和质子电导率的影响及其合成

获取原文
获取原文并翻译 | 示例
           

摘要

A series of meta-polybenzimidazole-block-para-polybenzimidazole (m-PBI-b-p-PBl), segmented block copolymers of PBI, were synthesized with various structural motifs and block lengths by condensing the diamine terminated meta-PBI (m-PBI-Am) and acid terminated para-VBl (p-PBI-Ac) oligomers. NMR studies and existence of two distinct glass transition temperatures (T_g), obtained from dynamical mechanical analysis (DMA) results, unequivocally confirmed the formation of block copolymer structure through the current polymerization methodology. Appropriate and careful selection of oligomers chain length enabled us to tailor the block length of block copolymers and also to make varieties of structural motifs. Increasingly distinct T_g peaks with higher block length of segmented block structure attributed the decrease in phase mixing between the meta-PBI and pam-PBI blocks, which in turn resulted into nanophase segregated domains. The proton conductivities of proton exchange membrane (PEM) developed from phosphoric acid (PA) doped block copolymer membranes were found to be increasing substantially with increasing block length of copolymers even though PA loading of these membranes did not alter appreciably with varying block length. For example when molecular weight (M_n) of blocks were increased from 1000 to SSOO then the proton conductivities at 160 °C of resulting copolymers increased from 0.05 to 0.11 S/cm. Higher block length induced nanophase separation between the blocks by creating less morphological barrier within the block which facilitated the movement of the proton in the block and hence resulting higher proton conductivity of the PEM. The structural varieties also influenced the phase separation and proton conductivity. In comparison to meta-para random copolymers reported earlier, the current meta-para segmented block copolymers were found to be more suitable for PBI-based PEM.
机译:通过缩合二胺封端的间-PBI(m-PBI-),合成了具有不同结构基序和嵌段长度的一系列间-聚苯并咪唑-嵌段-对-聚苯并咪唑(m-PBI-bp-PBl)嵌段共聚物。 Am)和酸终止的对-VB1(p-PBI-Ac)低聚物。 NMR研究以及通过动态力学分析(DMA)结果获得的两个不同的玻璃化转变温度(T_g)的存在,通过当前的聚合方法明确证实了嵌段共聚物结构的形成。适当和谨慎地选择低聚物的链长,使我们能够定制嵌段共聚物的嵌段长度,并制造出各种结构图案。随着嵌段嵌段结构嵌段长度的增加,不同的T_g峰越来越大,这归因于meta-PBI和pam-PBI嵌段之间相混合的减少,从而导致纳米相分离域的形成。发现由磷酸(PA)掺杂的嵌段共聚物膜形成的质子交换膜(PEM)的质子电导率随共聚物的嵌段长度的增加而显着增加,即使这些膜的PA负载不会随着嵌段长度的变化而明显改变。例如,当嵌段的分子量(M_n)从1000增加到SSOO时,则所得共聚物在160℃下的质子电导率从0.05增加到0.11S / cm。较高的嵌段长度通过在嵌段内产生较少的形态学屏障而在嵌段之间引起纳米相分离,这促进了质子在嵌段中的移动并因此导致PEM的较高的质子传导性。结构的变化也影响了相分离和质子传导性。与早先报道的间位对位无规共聚物相比,目前的间位对位嵌段共聚物被发现更适合基于PBI的PEM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号