...
首页> 外文期刊>ACS applied materials & interfaces >Synthesis and Extreme Rate Capability of Si-AI~C-N Functionalized Carbon Nanotube Spray-on Coatings as Li-Ion Battery Electrode
【24h】

Synthesis and Extreme Rate Capability of Si-AI~C-N Functionalized Carbon Nanotube Spray-on Coatings as Li-Ion Battery Electrode

机译:锂离子电池电极Si-Al〜C-N功能化碳纳米管喷涂涂层的合成及极速能力

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Silicon-based precursor derived glass-ceramics or PDCs have proven to be an attractive alternative anode material for Li ion batteries. Main challenges associated with PDC anodes are their low electrical conductivity, first cycle loss, and meager C-rate performance. Here, we show that thermal conversion of single source aluminum-modified polysilazane on the surfaces of carbon nanotubes (CNTs) results in a robust Si—Al—C—N/CNT shell/core composite that offers extreme C-rate capability as battery electrode. Addition of Al to the molecular network of Si—C—N improved electrical conductivity of Si— C—N by 4 orders of magnitude, while interfacing with CNTs showed 7-fold enhancement. Further, we present a convenient spray-coating technique for PDC composite electrode preparation that eliminates polymeric binder and conductive agent there-by reducing processing steps and eradicating foreign material in the electrode. The Si—Al—C— N/CNT electrode showed stable charge capacity of 577 mAh g~(-1) at 100 mA g and a remarkable 400 mAh g at 10 000 mA g~(-1), which is the highest reported value for a silazane derived glass-ceramic or nanocomposite electrode. Under symmetric cycling conditions, a high charge capacity of ~350 mA g~(-1) at 1600 mA g~(-1) was continuously observed for over 1000 cycles.
机译:硅基前驱物衍生的玻璃陶瓷或PDC已被证明是锂离子电池有吸引力的替代阳极材料。与PDC阳极相关的主要挑战是其低电导率,首次循环损耗和微不足道的C速率性能。在这里,我们表明,单源铝改性聚硅氮烷在碳纳米管(CNT)表面上的热转化产生了坚固的Si-Al-C-N / CNT壳/核复合材料,可提供极高的C速率能力作为电池电极。在Si-C-N分子网络中添加Al可将Si-C-N的电导率提高4个数量级,而与CNT的连接则表现出7倍的增强。此外,我们提出了一种用于PDC复合电极制备的便捷喷涂技术,该技术可通过减少加工步骤并消除电极中的异物来消除聚合物粘合剂和导电剂。 Si-Al-C- N / CNT电极在100 mA g时表现出577 mAh g〜(-1)的稳定充电容量,在10 000 mA g〜(-1)时表现出显着的400 mAh g的充电能力,这是报道最多的硅氮烷衍生的玻璃陶瓷或纳米复合电极的数值。在对称循环条件下,在超过1000个循环中连续观察到1600 mA g〜(-1)的〜350 mA g〜(-1)的高充电容量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号