首页> 美国卫生研究院文献>ACS Omega >A Versatile Carbon Nanotube-Based Scalable Approachfor Improving Interfaces in Li-Ion Battery Electrodes
【2h】

A Versatile Carbon Nanotube-Based Scalable Approachfor Improving Interfaces in Li-Ion Battery Electrodes

机译:基于多功能碳纳米管的可扩展方法用于改善锂离子电池电极的界面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Resistive interfaces within the electrodes limit the energy and power densities of a battery, for example, a Li-ion battery (LIB). Typically, active materials are mixed with conductive additives in organic solvents to form a slurry, which is then coated on current collectors (e.g., bare or carbon-coated Al foils) to reduce the inherent resistance of the active material. Although many approaches using nanomaterials to either replace Al foils or improve conductivity within the active materials have been previously demonstrated, the resistance at the current collector active material interface (CCAMI), a key factor for enhancing the energy and power densities, remains unaddressed. We show that carbon nanotubes (CNTs), either directly grown or spray-coated on Al foils, are highly effective in reducing the CCAMI resistance of traditional LIB cathode materials (LiFePO4 or LFP and LiNi0.33Co0.33Mn0.33O2 or NMC). Moreover, the CNT coatings displace the need for currently used toxic organic solvents (e.g., N-methyl-2-pyrrolidone) by providing capillary channels, which improve the wetting of aqueousdispersions containing active materials. The vertically aligned CNT-coatedelectrodes exhibited energy densities as high as (1) ∼500 Wh kg–1 at ∼170 W kg–1 forLFP and (2) ∼760 W h kg–1 at ∼570W kg–1 for NMC. The LIBs with CCAMI-engineered electrodeswithstood discharge rates as high as 600 mA g–1 for500 cycles in the case of LFP, where commercial electrodes failed.The CNT-based CCAMI engineering approach is versatile with wide applicabilityto improve the performance of even textured active materials for bothcathodes and anodes.
机译:电极内的电阻性界面限制了电池(例如锂离子电池(LIB))的能量和功率密度。通常,将活性材料与导电添加剂在有机溶剂中混合以形成浆料,然后将其涂覆在集电器(例如裸露的或碳涂覆的Al箔)上,以降低活性材料的固有电阻。尽管先前已经证明了许多使用纳米材料替代铝箔或提高活性材料内电导率的方法,但集电体活性材料界面(CCAMI)上的电阻是提高能量和功率密度的关键因素,目前尚未解决。我们表明,直接生长或喷涂在铝箔上的碳纳米管(CNT)在降低传统LIB阴极材料(LiFePO4或LFP和LiNi0.33Co0.33Mn0.33O2或NMC)的CCAMI电阻方面非常有效。此外,CNT涂层通过提供毛细管通道取代了目前使用的有毒有机溶剂(例如N-甲基-2-吡咯烷酮),从而改善了水性涂料的润湿性。含有活性物质的分散液。垂直排列的CNT涂层电极的能量密度高达(1)〜500 Wh kg –1 在〜170 W kg –1 LFP和(2)在〜570时为760 W h kg –1 对于NMC,W kg –1 。带有CCAMI工程电极的LIB可承受高达600 mA g –1 的放电速率在LFP情况下,商业电极发生故障时,循环500次。基于CNT的CCAMI工程方法具有广泛的适用性改善均质的活性材料的性能阴极和阳极。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号