...
首页> 外文期刊>ACS Omega >A Versatile Carbon Nanotube-Based Scalable Approach for Improving Interfaces in Li-Ion Battery Electrodes
【24h】

A Versatile Carbon Nanotube-Based Scalable Approach for Improving Interfaces in Li-Ion Battery Electrodes

机译:基于多功能碳纳米管的可扩展方法,用于改善锂离子电池电极中的界面

获取原文
           

摘要

Resistive interfaces within the electrodes limit the energy and power densities of a battery, for example, a Li-ion battery (LIB). Typically, active materials are mixed with conductive additives in organic solvents to form a slurry, which is then coated on current collectors (e.g., bare or carbon-coated Al foils) to reduce the inherent resistance of the active material. Although many approaches using nanomaterials to either replace Al foils or improve conductivity within the active materials have been previously demonstrated, the resistance at the current collector active material interface (CCAMI), a key factor for enhancing the energy and power densities, remains unaddressed. We show that carbon nanotubes (CNTs), either directly grown or spray-coated on Al foils, are highly effective in reducing the CCAMI resistance of traditional LIB cathode materials (LiFePO_(4) or LFP and LiNi_(0.33)Co_(0.33)Mn_(0.33)O_(2) or NMC). Moreover, the CNT coatings displace the need for currently used toxic organic solvents (e.g., N -methyl-2-pyrrolidone) by providing capillary channels, which improve the wetting of aqueous dispersions containing active materials. The vertically aligned CNT-coated electrodes exhibited energy densities as high as (1) ~500 W h kg~(–1) at ~170 W kg~(–1) for LFP and (2) ~760 W h kg~(–1) at ~570 W kg~(–1) for NMC. The LIBs with CCAMI-engineered electrodes withstood discharge rates as high as 600 mA g~(–1) for 500 cycles in the case of LFP, where commercial electrodes failed. The CNT-based CCAMI engineering approach is versatile with wide applicability to improve the performance of even textured active materials for both cathodes and anodes.
机译:电极内的电阻界面限制了电池(例如锂离子电池(LIB))的能量和功率密度。通常,将活性材料与导电添加剂在有机溶剂中混合以形成浆料,然后将其涂覆在集电器(例如裸露的或碳涂覆的Al箔)上以降低活性材料的固有电阻。尽管以前已经证明了许多使用纳米材料替代铝箔或提高活性材料内电导率的方法,但集电体活性材料界面(CCAMI)的电阻是提高能量和功率密度的关键因素,目前尚未解决。我们表明,直接生长或喷涂在铝箔上的碳纳米管(CNT)在降低传统LIB阴极材料(LiFePO_(4)或LFP和LiNi_(0.33)Co_(0.33)Mn_ (0.33)O_(2)或NMC)。此外,CNT涂层通过提供毛细通道来代替对当前使用的有毒有机溶剂(例如,N-甲基-2-吡咯烷酮)的需要,所述毛细通道改善了含有活性物质的水分散体的润湿性。垂直排列的CNT涂覆的电极在LFP的〜170 W kg〜(–1)和(2)〜760 W h kg〜(–的情况下)的能量密度高达(1)〜500 W h kg〜(–1)。 1)对于NMC,在〜570 W kg〜(–1)下。在商业电极失效的LFP情况下,带有CCAMI工程电极的LIB在500个循环中经受住了高达600 mA g〜(-1)的放电速率。基于CNT的CCAMI工程方法具有广泛的用途,具有广泛的适用性,可提高甚至用于正极和负极的纹理化活性材料的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号