...
首页> 外文期刊>Chemistry: A European journal >Enhancing photoactivity of TiO_2(B)/anatase core-shell nanofibers by selectively doping cerium ions into the TiO_2(B) core
【24h】

Enhancing photoactivity of TiO_2(B)/anatase core-shell nanofibers by selectively doping cerium ions into the TiO_2(B) core

机译:通过选择性地将铈离子掺杂到TiO_2(B)核中来增强TiO_2(B)/锐钛矿核壳纳米纤维的光活性

获取原文
获取原文并翻译 | 示例

摘要

Cerium ions (Ce~(3+)) can be selectively doped into the TiO2(B) core of TiO2(B)/anatase core-shell nanofi- bers by means of a simple one-pot hydrothermal treatment of a starting material of hydrogen trititanate (H2Ti3O7) nanofibers. These Ce~(3+) ions (0.202 nm) are located on the (110) lattice planes of the TiO_2(B) core in tunnels (width0.297 nm). The introduction of Ce3+ ions reduces the defects of the TiO2(B) core by inhibiting the faster growth of (110) lattice planes. More importantly, the redox potential of the Ce~(3+)/Ce4+ couple (E8(Ce3+/Ce4+)=1. 715 V versus the normal hydrogen electrode) is more negative than the valence band of TiO2(B). Therefore, once the Ce~(3+) -doped nanofibers are irradiated by UV light, the doped Ce~(3+) ions-in close vicinity to the interface between the TiO_2(B) core and anatase nanoshell- can efficiently trap the photogenerated holes. This facilitates the migration of holes from the anatase shell and leaves more photogenerated electrons in the anatase nanoshell, which results in a highly efficient separation of photogenerated charges in the anatase nanoshell. Hence, this enhanced charge-separation mechanism accelerates dye degradation and alcohol oxidation processes. The one-pot treatment doping strategy is also used to selectively dope other metal ions with variable oxidation states such as Co~(2+) /~(3+) and Cu+/~(2+) ions. The doping substantially improves the photocatalytic activity of the mixed-phase nanofibers. In contrast, the doping of ions with an invariable oxidation state, such as Zn~(2+), Ca ~(2+), or Mg~(2+), does not enhance the photoactivity of the mixed-phase nanofibers as the ions could not trap the photogenerated holes.
机译:铈离子(Ce〜(3+))可以通过简单的一锅水热处理氢起始原料而选择性地掺杂到TiO2(B)/锐钛矿型核壳纳米纤维的TiO2(B)核中。钛酸(H2Ti3O7)纳米纤维。这些Ce〜(3+)离子(0.202 nm)位于隧道(宽度0.297 nm)中的TiO_2(B)核的(110)晶面上。 Ce3 +离子的引入通过抑制(110)晶格面的快速生长而减少了TiO2(B)核的缺陷。更重要的是,Ce〜(3 +)/ Ce4 +对的氧化还原电势(E8(Ce3 + / Ce4 +)= 1。715 V,相对于普通氢电极)比TiO2(B)的价带更负。因此,一旦用紫外光照射了Ce〜(3+)掺杂的纳米纤维,掺杂的Ce〜(3+)离子(靠近TiO_2(B)核与锐钛矿型纳米壳之间的界面)可以有效地捕集Ce〜(3+)纳米纤维。光生孔。这促进了空穴从锐钛矿壳中的迁移,并在锐钛矿纳米壳中留下了更多的光生电子,从而导致了锐钛矿纳米壳中光生电荷的高效分离。因此,这种增强的电荷分离机理加速了染料降解和醇氧化过程。一锅法处理掺杂策略还用于选择性掺杂其他具有可变氧化态的金属离子,例如Co〜(2+)/〜(3+)和Cu + /〜(2+)离子。掺杂显着改善了混合相纳米纤维的光催化活性。相反,掺杂具有恒定氧化态的离子(如Zn〜(2 +),Ca〜(2+)或Mg〜(2+))不会增强混合相纳米纤维的光活性,因为离子不能捕获光生空穴。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号