首页> 外文期刊>Continuum mechanics and thermodynamics >The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity - Part 1: polycrystalline plasticity
【24h】

The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity - Part 1: polycrystalline plasticity

机译:耗散和缺陷能量在应变梯度可塑性问题的变式中的作用第1部分:多晶可塑性

获取原文
获取原文并翻译 | 示例
       

摘要

A general set of flow laws and associated variational formulations are constructed for small-deformation rate-independent problems in strain-gradient plasticity. The framework is based on the thermodynamically consistent theory due to Gurtin and Anand (J Mech Phys Solids 53:1624-1649, 2005), and includes as variables a set of microstresses which have both energetic and dissipative components. The flow law is of associative type. It is expressed as a normality law with respect to a convex but otherwise arbitrary yield function, or equivalently in terms of the corresponding dissipation function. Two cases studied are, first, an extension of the classical Hill-Mises or J_2 flow law and second, a form written as a linear sum of the magnitudes of the plastic strain and strain gradient. This latter form is motivated by work of Evans and Hutchinson (Acta Mater-57:1675-1688, 2009) and Nix and Gao (J Mech Phys Solids 46:411-425, 1998), who show that it leads to superior correspondence with experimental results, at least for particular classes of problems. The corresponding yield function is obtained by a duality argument. The variational problem is based on the flow rule expressed in terms of the dissipation function, and the problem is formulated as a variational inequality in the displacement, plastic strain, and hardening parameter. Dissipative components of the microstresses, which are indeterminate, are absent from the formulation. Existence and uniqueness of solutions are investigated for the generalized Hill-Mises and linear-sum dissipation functions, and for various combinations of defect energy. The conditions for well-posedness of the problem depend critically on the choice of dissipation function, and on the presence or otherwise of a defect energy in the plastic strain or plastic strain gradient, and of internal-variable hardening.
机译:针对应变梯度可塑性中与小变形速率无关的问题,构建了一套通用的流动规律和相关的变化公式。该框架基于归因于Gurtin和Anand的热力学一致理论(J Mech Phys Solids 53:1624-1649,2005),并包括一组具有高能和耗散成分的微应力作为变量。流量定律是关联类型的。相对于凸但任意的屈服函数,或等效地在相应的耗散函数方面,它表示为正态律。研究的两个案例是,首先是经典Hill-Mises或J_2流动定律的扩展,其次是写为塑性应变和应变梯度大小的线性和的形式。后一种形式是由Evans和Hutchinson(Acta Mater-57:1675-1688,2009)和Nix and Gao(J Mech Phys Solids 46:411-425,1998)的工作所激发的,这些研究表明,这种形式可以带来与实验结果,至少针对特定类别的问题。通过对偶参数获得相应的收益函数。变分问题基于以耗散函数表示的流动规则,并且将该问题表述为位移,塑性应变和硬化参数的变分不等式。配方中没有不确定的微应力耗散成分。研究了广义Hill-Mises函数和线性和耗散函数以及缺陷能量的各种组合的解的存在性和唯一性。问题的适切性的条件主要取决于耗散函数的选择,以及塑性应变或塑性应变梯度中是否存在缺陷能量以及内部变量硬化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号