首页> 外文期刊>Contemporary Physics: A Review of Physics and Associated Technologies >Lorenz, G?del and Penrose: new perspectives on determinism and causality in fundamental physics
【24h】

Lorenz, G?del and Penrose: new perspectives on determinism and causality in fundamental physics

机译:洛伦兹,格德尔和彭罗斯:基本物理学中的决定论和因果关系的新观点

获取原文
获取原文并翻译 | 示例
           

摘要

Despite being known for his pioneering work on chaotic unpredictability, the key discovery at the core of meteorologist Ed Lorenz's work is the link between space-time calculus and state-space fractal geometry. Indeed, properties of Lorenz's fractal invariant set relate space-time calculus to deep areas of mathematics such as G?del's Incompleteness Theorem. Could such properties also provide new perspectives on deep unsolved issues in fundamental physics? Recent developments in cosmology motivate what is referred to as the 'cosmological invariant set postulate': that the universe U can be considered a deterministic dynamical system evolving on a causal measure-zero fractal invariant set I_U in its state space. Symbolic representations of I_U are constructed explicitly based on permutation representations of quaternions.The resulting 'invariant set theory'provides some new perspectives on determinism and causality in fundamental physics. For example, while the cosmological invariant set appears to have a rich enough structure to allow a description of (quantum) probability, its measure-zero character ensures it is sparse enough to prevent invariant set theory being constrained by the Bell inequality (consistent with a partial violation of the so-called measurement independence postulate). The primacy of geometry as embodied in the proposed theory extends the principles underpinning general relativity. As a result, the physical basis for contemporary programmes which apply standard field quantisation to some putative gravitational lagrangian is questioned. Consistent with Penrose's suggestion of a deterministic but non-computable theory of fundamental physics, an alternative 'gravitational theory of the quantum' is proposed based on the geometry of I_U, with new perspectives on the problem of black-hole information loss and potential observational consequences for the dark universe.
机译:尽管以其关于混沌不可预测性的开创性工作而闻名,但气象学家埃德·洛伦兹(Ed Lorenz)的核心发现是时空演算与状态空间分形几何之间的联系。确实,洛伦兹的分形不变集的性质将时空演算与诸如G?del不完全性定理之类的数学深层区域联系起来。这样的性质还能为基础物理学中尚未解决的深层问题提供新的观点吗?宇宙学的最新发展激发了所谓的“宇宙不变性集假设”:宇宙U可以被认为是在状态空间中因果度量零分形不变集I_U上发展的确定性动力学系统。 I_U的符号表示是基于四元数的置换表示而明确构建的。由此产生的“不变集理论”为基础物理学中的确定性和因果关系提供了一些新观点。例如,虽然宇宙不变集似乎具有足够丰富的结构以允许描述(量子)概率,但其零度量特性确保其足够稀疏以防止不变集理论受到Bell不等式的约束(与a一致部分违反所谓的测量独立性假设)。所提出的理论所体现的几何学的首要地位扩展了支持广义相对论的原理。结果,对当代程序的物理基础提出了质疑,这些程序将标准场量化应用于某些假定的拉格朗日函数。与彭罗斯(Penrose)关于确定性但无可争议的基础物理学理论的建议相一致,基于I_U的几何学提出了另一种“量子引力理论”,并提出了有关黑洞信息丢失和潜在观测后果的新观点。为黑暗的宇宙。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号