...
首页> 外文期刊>Biochimica et biophysica acta. Molecular cell research >Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann-Pick C1 disease - Lysosomal storage disorders caused by defects of non-lysosomal proteins.
【24h】

Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann-Pick C1 disease - Lysosomal storage disorders caused by defects of non-lysosomal proteins.

机译:多种硫酸酯酶缺乏症,粘膜脂血症II / III和Niemann-Pick C1疾病的分子基础-非溶酶体蛋白缺陷引起的溶酶体贮积病。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Multiple sulfatase deficiency (MSD), mucolipidosis (ML) II/III and Niemann-Pick type C1 (NPC1) disease are rare but fatal lysosomal storage disorders caused by the genetic defect of non-lysosomal proteins. The NPC1 protein mainly localizes to late endosomes and is essential for cholesterol redistribution from endocytosed LDL to cellular membranes. NPC1 deficiency leads to lysosomal accumulation of a broad range of lipids. The precise functional mechanism of this membrane protein, however, remains puzzling. ML II, also termed I cell disease, and the less severe ML III result from deficiencies of the Golgi enzyme N-acetylglucosamine 1-phosphotransferase leading to a global defect of lysosome biogenesis. In patient cells, newly synthesized lysosomal proteins are not equipped with the critical lysosomal trafficking marker mannose 6-phosphate, thus escaping from lysosomal sorting at the trans Golgi network. MSD affects the entire sulfatase family, at least seven members of which are lysosomal enzymes that are specifically involved in the degradation of sulfated glycosaminoglycans, sulfolipids or other sulfated molecules. The combined deficiencies of all sulfatases result from a defective post-translational modification by the ER-localized formylglycine-generating enzyme (FGE), which oxidizes a specific cysteine residue to formylglycine, the catalytic residue enabling a unique mechanism of sulfate ester hydrolysis. This review gives an update on the molecular bases of these enigmatic diseases, which have been challenging researchers since many decades and so far led to a number of surprising findings that give deeper insight into both the cell biology and the pathobiochemistry underlying these complex disorders. In case of MSD, considerable progress has been made in recent years towards an understanding of disease-causing FGE mutations. First approaches to link molecular parameters with clinical manifestation have been described and even therapeutical options have been addressed. Further, the discovery of FGE as an essential sulfatase activating enzyme has considerable impact on enzyme replacement or gene therapy of lysosomal storage disorders caused by single sulfatase deficiencies.
机译:多种硫酸酯酶缺乏症(MSD),粘膜脂溢性疾病(ML)II / III和Niemann-Pick C1型(NPC1)疾病很少见,但致命的溶酶体贮积病是由非溶酶体蛋白的遗传缺陷引起的。 NPC1蛋白主要定位于晚期内体,并且对于胆固醇从内吞LDL到细胞膜的重新分布至关重要。 NPC1缺乏导致溶酶体积累大量脂质。然而,这种膜蛋白的确切功能机制仍然令人困惑。 ML II,也称为I细胞病,较不严重的ML III,是由于高尔基体酶N-乙酰氨基葡糖1-磷酸转移酶的缺乏导致溶酶体生物发生的整体缺陷。在患者细胞中,新合成的溶酶体蛋白未配备关键的溶酶体运输标记甘露糖6-磷酸,从而避免了在反Golgi网络进行溶酶体分选。 MSD影响整个硫酸酯酶家族,其中至少有七个成员是溶酶体酶,这些酶特别参与硫酸化糖胺聚糖,硫脂或其他硫酸化分子的降解。所有硫酸酯酶的综合缺陷归因于ER定位的甲酰基甘氨酸生成酶(FGE)的翻译后修饰缺陷,该酶将特定的半胱氨酸残基氧化为甲酰基甘氨酸,催化残基使硫酸酯水解具有独特的机理。这篇综述提供了这些神秘疾病的分子基础的最新信息,数十年来一直困扰着研究人员,迄今为止,这些令人惊奇的发现使人们对这些复杂疾病的细胞生物学和病理生物化学有了更深入的了解。对于MSD,近年来在了解引起疾病的FGE突变方面已取得了相当大的进步。已经描述了将分子参数与临床表现联系起来的第一种方法,甚至已经讨论了治疗选择。此外,FGE作为必需的硫酸酯酶活化酶的发现对由单一硫酸酯酶缺陷引起的溶酶体贮积症的酶替代或基因治疗产生了重大影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号