...
首页> 外文期刊>Biomaterials >Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness
【24h】

Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness

机译:调节聚合物化学性质,以增强水凝胶内非病毒基因的传递,并具有可调的基质刚度

获取原文
获取原文并翻译 | 示例
           

摘要

Non-viral gene delivery holds great promise for promoting tissue regeneration, and offers a potentially safer alternative than viral vectors. Great progress has been made to develop biodegradable polymeric vectors for non-viral gene delivery in 2D culture, which generally involves isolating and modifying cells invitro, followed by subsequent transplantation invivo. Scaffold-mediated gene delivery may eliminate the need for the multiple-step process invitro, and allows sustained release of nucleic acids in situ. Hydrogels are widely used tissue engineering scaffolds given their tissue-like water content, injectability and tunable biochemical and biophysical properties. However, previous attempts on developing hydrogel-mediated non-viral gene delivery have generally resulted in low levels of transgene expression inside 3D hydrogels, and increasing hydrogel stiffness further decreased such transfection efficiency. Here we report the development of biodegradable polymeric vectors that led to efficient gene delivery inside poly(ethylene glycol) (PEG)-based hydrogels with tunable matrix stiffness. Photocrosslinkable gelatin was maintained constant in the hydrogel network to allow cell adhesion. We identified a lead biodegradable polymeric vector, E6, which resulted in increased polyplex stability, DNA protection and achieved sustained high levels of transgene expression inside 3D PEG-DMA hydrogels for at least 12 days. Furthermore, we demonstrated that E6-based polyplexes allowed efficient gene delivery inside hydrogels with tunable stiffness ranging from 2 to 175kPa, with the peak transfection efficiency observed in hydrogels with intermediate stiffness (28kPa). The reported hydrogel-mediated gene delivery platform using biodegradable polyplexes may serve as a local depot for sustained transgene expression in situ to enhance tissue engineering across broad tissue types.
机译:非病毒基因传递具有促进组织再生的巨大希望,并提供了比病毒载体更安全的选择。在2D培养中开发用于非病毒基因递送的可生物降解聚合物载体方面已经取得了巨大进展,该载体通常涉及体外分离和修饰细胞,然后进行体内移植。支架介导的基因传递可以消除体外多步过程的需要,并允许核酸原位持续释放。水凝胶具有类似组织的水含量,可注射性以及可调节的生化和生物物理特性,因此被广泛用作组织工程支架。然而,先前开发水凝胶介导的非病毒基因递送的尝试通常导致3D水凝胶内部的转基因表达水平低,并且水凝胶硬度的增加进一步降低了这种转染效率。在这里,我们报告了可生物降解的聚合物载体的发展,该载体可在具有可调基体刚度的基于聚乙二醇(PEG)的水凝胶内有效地传递基因。可光交联的明胶在水凝胶网络中保持恒定以允许细胞粘附。我们确定了一种领先的可生物降解的聚合物载体E6,该载体可提高多态复合物的稳定性,DNA保护并在3D PEG-DMA水凝胶内部实现持续高水平的转基因表达至少12天。此外,我们证明了基于E6的复合物可以在2到175kPa的可调硬度范围内高效传递水凝胶,在中等强度(28kPa)的水凝胶中观察到最高的转染效率。报道的使用可生物降解的复合物的水凝胶介导的基因递送平台可以作为局部贮库,用于在原位持续进行转基因表达,以增强跨广泛组织类型的组织工程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号