首页> 外文期刊>Biochemistry >Active internal waters in the bacteriorhodopsin photocycle. A comparative study of the L and M intermediates at room and cryogenic temperatures by infrared Spectroscopy
【24h】

Active internal waters in the bacteriorhodopsin photocycle. A comparative study of the L and M intermediates at room and cryogenic temperatures by infrared Spectroscopy

机译:细菌视紫红质光周期中的活跃内部水域。室温和低温下L和M中间体的红外光谱比较研究

获取原文
获取原文并翻译 | 示例
           

摘要

We present time-resolved room-temperature infrared difference spectra for the bacteriorhodopsin (bR) photocycle at 8 cm(-1) spectral and 5 us temporal resolution, from 4000 to 800 cm-1. An in situ hydration method allowed for a controlled and stable sample hydration (92% relative humidity), largely improving the quality of the data without affecting the functionality of bR. Experiments in both (H2O)-O-16 and (H2O)-O-18 were conducted to assign bands to internal water molecules. Room-temperature difference spectra of the L and M intermediates minus the bR ground state (L-BR and M-BR, respectively) were comprehensively compared with their low-temperature counterparts. The room-temperature M-BR spectrum was almost identical to that obtained at 230 K, except for a continuum band. The continuum band contains water vibrations from this spectral comparison between (H2O)-O-16 and (H2O)-O-18, and no continuum band at 230 K suggests that the protein/solvent dynamics are insufficient for deprotonation of the water cluster. On the other hand, an intense positive broadband in the low-temperature L-BR spectrum (170 K) assigned to the formation of a water cavity in the cytoplasmic domain is absent at room temperature. This water cavity, proposed to be an essential feature for the formation of L, seems now to be a low-temperature artifact caused by restricted protein dynamics at 170 K. The observed differences between low- and room-temperature FTIR spectra are further discussed in light of previously reported dynamic transitions in bR. Finally, we show that the kinetics of the transient heat relaxation of bR after photoexcitation proceeds as a thermal diffusion process, uncorrelated with the photocycle itself.
机译:我们提出时间分辨的室温红外光谱的细菌视紫红质(bR)光周期在8 cm(-1)光谱和5 us时间分辨率,从4000到800 cm-1。原位水合方法可实现受控且稳定的样品水合(相对湿度为92%),从而在不影响bR功能的情况下大大提高了数据质量。进行了(H2O)-O-16和(H2O)-O-18的实验,以将条带分配给内部水分子。将L和M中间体减去bR基态(分别为L-BR和M-BR)的室温差光谱与低温对应物进行了全面比较。除了连续谱带外,室温M-BR谱图与在230 K下获得的谱图几乎相同。连续谱带包含来自(H2O)-O-16和(H2O)-O-18之间的光谱比较的水振动,并且在230 K时没有连续谱带表明蛋白质/溶剂动力学不足以使水簇去质子化。另一方面,在室温下缺乏在L-BR光谱(170K)中分配给细胞质域中的水腔的强烈的正宽带。该水腔被认为是L形成的基本特征,现在似乎是由于在170 K时蛋白质动力学受限制而引起的低温伪影。进一步讨论了观察到的低温和室温FTIR光谱之间的差异根据先前报道的bR动态转变。最后,我们证明了光激发后bR的瞬态热弛豫动力学是作为热扩散过程进行的,与光循环本身无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号