首页> 外文期刊>Biochemistry >Ability of Viral Topoisomerase II To Discern the Handedness of Supercoiled DNA:Bimodal Recognition of DNA Geometry by Type II Enzymes
【24h】

Ability of Viral Topoisomerase II To Discern the Handedness of Supercoiled DNA:Bimodal Recognition of DNA Geometry by Type II Enzymes

机译:病毒拓扑异构酶II识别超螺旋DNA的手性的能力:II型酶对DNA几何形状的双峰识别。

获取原文
获取原文并翻译 | 示例
       

摘要

Previous studies with human and bacterial topoisomerases suggest that the type II enzyme utilizes two distinct mechanisms to recognize the handedness of DNA supercoils.It has been proposed that the ability of some type II enzymes,such as human topoisomerase II alpha and Escherichia coli topoisomerase IV,to distinguish supercoil geometry during DNA relaxation is mediated by elements in the variable C-terminal domain of the protein.In contrast,the ability of human topoisomerase II alpha and topoisomerase II beta to discern the handedness of supercoils during DNA cleavage suggests that residues in the conserved N-terminal or central domain of the protein are involved in this process.To test this hypothesis,the ability of Paramecium bursaria chlorella virus-l (PBCV-l) and chlorella virus Marburg-1 (CVM-1) topoisomerase II to relax and cleave negatively and positively supercoiled plasmids was assessed.These enzymes display a high degree of sequence identity with the N-terminal and central domains of eukaryotic topoisomerase II but naturally lack the C-terminal domain.While PBCV-1 and CVM-1 topoisomerase II relaxed under-and overwound substrates at similar rates,they were able to discern the handedness of supercoils during the cleavage reaction and preferentially cut negatively supercoiled DNA.Preferential cleavage was not due to a change in site specificity,DNA binding,or religation.These findings are consistent with a bimodal recognition of DNA geometry in which topoisomerase II uses elements in the C-terminal domain to sense the handedness of supercoils during DNA relaxation and elements in the conserved N-terminal or central domain during DNA cleavage.
机译:先前有关人类和细菌拓扑异构酶的研究表明,II型酶利用两种不同的机制来识别DNA超螺旋的操纵性。有人提出了某些II型酶的能力,例如人拓扑异构酶IIα和大肠杆菌拓扑异构酶IV,区分DNA松弛过程中超螺旋的几何结构是由蛋白质的可变C末端结构域介导的。相反,人类拓扑异构酶IIα和拓扑异构酶IIβ识别DNA切割过程中超螺旋的惯性的能力表明,DNA中的残基该过程涉及蛋白质的保守N端或中央结构域。为了验证这一假设,草履虫草小球藻小球藻病毒I(PBCV-1)和小球藻病毒Marburg-1(CVM-1)拓扑异构酶II的松弛能力对这些酶显示出与N末端和中央d高度同源的序列真核生物拓扑异构酶II的omains,但自然缺乏C末端结构域。虽然PBCV-1和CVM-1拓扑异构酶II以相似的速率松弛下层和上层底物,但它们能够辨别切割反应期间超螺旋的顺手性,并优先切割优先切割不是由于位点特异性,DNA结合或连接的改变所致。这些发现与DNA几何结构的双峰识别相一致,拓扑异构酶II使用C末端结构域中的元​​件来感应DNA松弛过程中的超螺旋和DNA切割过程中保守的N末端或中央结构域中的元​​素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号