...
首页> 外文期刊>Biochemistry >Quinone Reduction via Secondary B-Branch Electron Transfer in Mutant Bacterial Reaction Centers.
【24h】

Quinone Reduction via Secondary B-Branch Electron Transfer in Mutant Bacterial Reaction Centers.

机译:通过突变细菌反应中心中的次级B分支电子转移进行醌还原。

获取原文
获取原文并翻译 | 示例
           

摘要

Symmetry-related branches of electron-transfer cofactors-initiating with a primary electron donor (P) and terminating in quinone acceptors (Q)-are common features of photosynthetic reaction centers (RC). Experimental observations show activity of only one of them-the A branch-in wild-type bacterial RCs. In a mutant RC, we now demonstrate that electron transfer can occur along the entire, normally inactive B-branch pathway to reduce the terminal acceptor Q(B) on the time scale of nanoseconds. The transmembrane charge-separated state P(+)Q(B)(-) is created in this manner in a Rhodobacter capsulatus RC containing the F(L181)Y-Y(M208)F-L(M212)H-W(M250)V mutations (YFHV). The W(M250)V mutation quantitatively blocks binding of Q(A), thereby eliminating Q(B) reduction via the normal A-branch pathway. Full occupancy of the Q(B) site by the native UQ(10) is ensured (without the necessity of reconstitution by exogenous quinone) by purification of RCs with the mild detergent, Deriphat 160-C. The lifetime of P(+)Q(B)(-) in the YFHV mutant RC is >6 s (at pH 8.0, 298 K). This charge-separated state is not formed upon addition of competitive inhibitors of Q(B) binding (terbutryn or stigmatellin). Furthermore, this lifetime is much longer than the value of approximately 1-1.5 s found when P(+)Q(B)(-) is produced in the wild-type RC by A-side activity alone. Collectively, these results demonstrate that P(+)Q(B)(-) is formed solely by activity of the B-branch carriers in the YFHV RC. In comparison, P(+)Q(B)(-) can form by either the A or B branches in the YFH RC, as indicated by the biexponential lifetimes of approximately 1 and approximately 6-10 s. These findings suggest that P(+)Q(B)(-) states formed via the two branches are distinct and that P(+)Q(B)(-) formed by the B side does not decay via the normal (indirect) pathway that utilizes the A-side cofactors when present. These differences may report on structural and energetic factors that further distinguish the functional asymmetry of the two cofactor branches.
机译:与光电子反应中心(RC)的共同特征是与电子传递辅因子的对称性相关的分支—从一次电子供体(P)开始并终止于醌受体(Q)。实验观察结果表明,其中只有一个-A分支-在野生型细菌RC中具有活性。在一个突变的RC中,我们现在证明电子传递可以沿着整个正常非活动的B分支路径发生,以在纳秒级的时间尺度上减少末端受体Q(B)。以这种方式在含有F(L181)YY(M208)FL(M212)HW(M250)V突变(YFHV)的荚膜红球菌RC中以这种方式创建跨膜电荷分离状态P(+)Q(B)(-) 。 W(M250)V突变定量阻断Q(A)的结合,从而消除了通过正常A分支途径降低Q(B)的现象。通过使用温和的洗涤剂Deriphat 160-C纯化RC,可确保天然UQ(10)完全占据Q(B)位置(无需通过外源醌重构)。 YFHV突变体RC中P(+)Q(B)(-)的寿命> 6 s(在pH 8.0、298 K下)。添加电荷竞争性Q(B)抑制剂(叔丁烯或柱头蛋白)后,不会形成这种电荷分离状态。此外,该寿命比仅通过A侧活性在野生型RC中产生P(+)Q(B)(-)时发现的大约1-1.5 s的值长得多。总体而言,这些结果表明,P(+)Q(B)(-)仅由YFHV RC中B分支载体的活性形成。相比之下,P(+)Q(B)(-)可以由YFH RC中的A或B分支形成,如约1和6-10 s的双指数寿命所示。这些发现表明,通过两个分支形成的P(+)Q(B)(-)状态是不同的,并且由B侧形成的P(+)Q(B)(-)不会通过正常(间接)衰减。存在时利用A侧辅因子的途径。这些差异可能报告了进一步区分两个辅因子分支的功能不对称的结构和能量因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号