...
首页> 外文期刊>Computers & Fluids >A physically consistent and numerically robust k-epsilon model for computing turbulent flows with shock waves
【24h】

A physically consistent and numerically robust k-epsilon model for computing turbulent flows with shock waves

机译:物理一致且数值鲁棒的kε模型,用于计算带有冲击波的湍流

获取原文
获取原文并翻译 | 示例
           

摘要

High-speed turbulent flows with shock waves pose significant challenge in terms of physical modeling and numerical accuracy. In this paper, we develop a k-epsilon turbulence model for canonical shock-turbulence interaction, based on the physical ideas of shock-unsteadiness damping. The shock-unsteadiness k-e. model proposed earlier by Sinha et al. (Phys. Fluids, 15(8), 2003) has model parameters that are functions of upstream Mach number. Our main objective is to eliminate the dependence of the model parameters on upstream flow quantities, and thus overcome difficulties in numerical implementation in complex flow applications. For the turbulent kinetic energy, this is achieved by proposing a new model for the shock-unsteadiness source term that is physically and dimensionally consistent with the earlier formulation. An alternate form of the dissipation rate equation is also used to eliminate upstream dependence of the model parameter in the production term. The proposed model is employed to compute the canonical interaction of a normal shock with homogeneous isotropic turbulence. Large numerical errors at the shock wave are eliminated by employing a transformation of the turbulence variables that result in a conservative form of the governing equations. The new model thus gives physically consistent and numerically accurate results at shock waves. The model predictions for turbulence kinetic energy and its dissipation rate are found to match DNS data over a range of Mach numbers. (C) 2016 Elsevier Ltd. All rights reserved.
机译:带有冲击波的高速湍流对物理建模和数值精度提出了重大挑战。在本文中,我们基于冲击非定常阻尼的物理思想,开发了用于规范冲击-湍流相互作用的k-ε湍流模型。冲击不稳定度k-e。 Sinha等人先前提出的模型。 (Phys.Fluids,15(8),2003)具有作为上游马赫数的函数的模型参数。我们的主要目标是消除模型参数对上游流量的依赖性,从而克服复杂流量应用中数值实施中的困难。对于湍动能,这是通过为冲击不稳定源项提出一个新模型实现的,该模型在物理和尺寸上与早期的公式保持一致。耗散率方程的另一种形式也用于消除生产项中模型参数的上游依赖性。所提出的模型用于计算具有均质各向同性湍流的法向冲击的规范相互作用。通过采用湍流变量的变换消除了冲击波处的较大数值误差,这导致了控制方程的保守形式。因此,新模型在冲击波下给出了物理上一致且数值精确的结果。发现湍流动能及其耗散率的模型预测与马赫数范围内的DNS数据匹配。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号