首页> 外文期刊>Computers & Fluids >Assessment of a high-order discontinuous Galerkin method for internal flow problems. Part I: Benchmark results for quasi-1D, 2D waves propagation and axisymmetric turbulent flows
【24h】

Assessment of a high-order discontinuous Galerkin method for internal flow problems. Part I: Benchmark results for quasi-1D, 2D waves propagation and axisymmetric turbulent flows

机译:评估内部流动问题的高阶不连续Galerkin方法。第一部分:准1D,2D波传播和轴对称湍流的基准结果

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this work we apply a high-order discontinuous Galerkin (DG) finite element method to inviscid and turbulent internal flow problems. The equations here considered are the quasi-1D, 2D Euler equations and the RANS and k - omega equations in axisymmetric coordinates. The method here proposed is designed to ensure high-order accuracy in ducts and engine-like geometries using both explicit and implicit schemes for the temporal discretization of the governing equations. Absorbing Sponge Layer (ASL) boundary conditions are implemented to minimize the reflection of out-going waves at open boundaries. A shock capturing technique is used to control the oscillations of high-order solutions around shocks. Accurate solutions of the hyperbolic equations are performed by means of the five-stage fourth-order accurate Strong Stability Preserving Runge-Kutta scheme, while the implicit Backward-Euler scheme is adopted for efficient steady state simulations of internal turbulent flows. Two types of test-problems have been considered, one focusing on the potential of DG method to solve ideal quasi-1D and 2D waves propagation and shock phenomena that may occur in ducts, and the other on its feasibility to provide high-order accurate solutions of multi-dimensional internal turbulent flows in geometries typical of internal combustion engine (ICE) applications. To clearly illustrate the performance of the high-order DG method, the results are compared with exact solutions, experimental data and second-order accurate solutions obtained with a finite volume commercial code. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在这项工作中,我们将高阶不连续伽勒金(DG)有限元方法应用于不粘和湍流的内部流动问题。这里考虑的方程是在轴对称坐标系中的准1D,2D欧拉方程以及RANS和k-omega方程。本文提出的方法旨在使用显式和隐式方案对控制方程式进行时间离散化,以确保在管道和类似发动机的几何结构中实现高阶精度。实施吸收海绵层(ASL)边界条件是为了最小化开放边界处的外向波反射。震荡捕获技术用于控制震荡周围高阶解的振荡。双曲方程的精确解是通过五阶段的四阶精确的强稳性保留Runge-Kutta方案进行的,而隐式Backward-Euler方案则用于内部湍流的高效稳态仿真。考虑了两种类型的测试问题,一种侧重于DG方法解决理想的1D和2D波传播和管道中可能出现的冲击现象的潜力,另一种侧重于其提供高阶精确解决方案的可行性内燃机(ICE)应用中典型几何形状的多维内部湍流的分析。为了清楚地说明高阶DG方法的性能,将结果与使用有限体积的商业代码获得的精确解,实验数据和二阶精确解进行了比较。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号