...
首页> 外文期刊>Computers & Fluids >Plasma flow control simulations of a low-Reynolds number low-aspect-ratio wing
【24h】

Plasma flow control simulations of a low-Reynolds number low-aspect-ratio wing

机译:低雷诺数低纵横比机翼的等离子体流控制模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Large-eddy simulation (LES) is employed to investigate use of plasma-based control in order to improve aerodynamic performance of a flat-plate wing. The wing has a rectangular planform, a thickness to chord ratio of 0.016, and an aspect ratio of 2.0. Computations are carried out at a chord-based Reynolds number of 20,000, such that the configuration and flow conditions are typical of those commonly utilized in micro air vehicle (MAV) applications. Solutions are obtained to the Navier-Stokes equations, that were augmented by source terms used to represent body forces imparted by plasma actuators on the fluid. A simple phenomenological model provided these body forces resulting from the electric field generated by the plasma. The numerical method is based upon a high-fidelity time-implicit scheme and an implicit LES approach, which are applied to obtain solutions on an overset mesh system. The control strategy explores plasma actuators that are distributed in the spanwise direction along the wing leading edge, and actuators extending in the chordwise direction along the wing tip. The investigation considers plasma-induced forces that are imposed in either the co-flowing or counter-flow directions for the former arrangement, and directed inboard or outboard for the latter. Both continuous and pulsed operation of actuators are simulated, and the magnitude of the plasma force is varied in order to establish the most efficient means of control. Computations are carried out at angles of attack that are below (8.0 deg) and above (25.0 deg) the stall value. Control solutions are compared with baseline results without actuation to determine the most beneficial control strategies. It was found that actuation is effective only for sufficiently large values of the plasma force. A favorable comparison is shown with the limited available experimental data. Published by Elsevier Ltd.
机译:大涡模拟(LES)用于研究基于等离子体的控制的使用,以改善平板机翼的空气动力性能。机翼具有矩形平面形状,厚度与弦比为0.016,纵横比为2.0。计算是在基于和弦的20,000雷诺数下进行的,因此配置和流动条件是微型飞机(MAV)应用中常用的典型配置和流动条件。获得了Navier-Stokes方程的解,并用源项来扩充解,这些源项用来表示等离子体致动器对流体施加的体力。一个简单的现象模型提供了这些由等离子体产生的电场产生的体力。数值方法是基于高保真时间隐式方案和隐式LES方法的,它们被用于获得过剩网格系统的解。控制策略探讨了沿翼前缘沿翼展方向分布的等离子致动器,以及沿翼尖沿翼弦方向延伸的等离子致动器。研究考虑了等离子体引起的力,对于前一种布置是在同向或逆流方向上施加的,而对于后者则指向内侧或外侧。模拟了执行器的连续和脉冲操作,并且改变了等离子力的大小,以便建立最有效的控制方式。以低于失速值(8.0度)和高于失速值(25.0度)的迎角进行计算。将控制解决方案与没有驱动的基线结果进行比较,以确定最有利的控制策略。已经发现,致动仅对足够大的等离子力值有效。有限的可用实验数据显示了有利的比较。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号