...
首页> 外文期刊>Computer-Aided Design >Improving spatial coverage while preserving the blue noise of point sets
【24h】

Improving spatial coverage while preserving the blue noise of point sets

机译:在保留点集的蓝噪声的同时改善空间覆盖率

获取原文
获取原文并翻译 | 示例
           

摘要

We explore the notion of a Well-spaced Blue-noise Distribution (WBD) of points, which combines two desirable properties. First, the point distribution is random, as measured by its spectrum having blue noise. Second, it is well-spaced in the sense that the minimum separation distance between samples is large compared to the maximum coverage distance between a domain point and a sample, i.e. its Voronoi cell aspect ratios 2β~i are small. It is well known that maximizing one of these properties destroys the other: uniform random points have no aspect ratio bound, and the vertices of an equilateral triangular tiling have no randomness. However, we show that there is a lot of room in the middle to get good values for both. Maximal Poisson-disk sampling provides β = 1 and blue noise. We show that a standard optimization technique can improve the well-spacedness while preserving randomness. Given a random point set, our Opt-β~i algorithm iterates over the points, and for each point locally optimizes its Voronoi cell aspect ratio 2β~i. It can improve β~i to a large fraction of the theoretical bound given by a structured tiling: improving from 1.0 to around 0.8, about half-way to 0.58, while preserving most of the randomness of the original set. In terms of both β and randomness, the output of Opt-β~i compares favorably to alternative point improvement techniques, such as centroidal Voronoi tessellation with a constant density function, which do not target β directly. We demonstrate the usefulness of our output through meshing and filtering applications. An open problem is constructing from scratch a WBD distribution with a guarantee of β < 1.
机译:我们探索了点的合理间隔蓝噪声分布(WBD)的概念,该概念结合了两个理想的属性。首先,点分布是随机的,如具有蓝噪声的光谱所测量的。第二,在一定意义上是间隔良好的,即与域点和样本之间的最大覆盖距离相比,样本之间的最小分离距离大,即,其Voronoi细胞纵横比2β〜i小。众所周知,最大化这些特性中的一个会破坏另一个特性:均匀的随机点没有纵横比的范围,等边三角形平铺的顶点没有随机性。但是,我们证明了在中间有很多空间可以为两者获得良好的价值。最大泊松圆盘采样可提供β= 1和蓝噪声。我们证明了一种标准的优化技术可以在保持随机性的同时改善空间分布。给定一个随机点集,我们的Opt-β〜i算法会迭代这些点,并针对每个点局部优化其Voronoi细胞长宽比2β〜i。它可以将β〜i提高到结构化切片所给出的理论界限的很大一部分:从1.0改善到0.8,大约是0.58的一半,同时保留了原始集的大部分随机性。就β和随机性而言,Opt-β〜i的输出与替代点改进技术(例如具有恒定密度函数的质心Voronoi细分)的优势不相上下,后者不直接针对β。我们通过网格化和过滤应用程序演示了输出结果的有用性。一个开放的问题是从头开始构建具有β<1的保证的WBD分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号