首页> 外文学位 >Improving Sensitivity and Spatial Coverage of Myocardial Arterial Spin Labeling
【24h】

Improving Sensitivity and Spatial Coverage of Myocardial Arterial Spin Labeling

机译:改善心肌自旋标记的敏感性和空间覆盖率

获取原文
获取原文并翻译 | 示例

摘要

Magnetic resonance imaging (MRI) is a medical imaging technique invented by Paul Lauterbur in 1971 that uses the principles of nuclear magnetic resonance to generate images. Widely touted as the most important medical invention in the last 50 years, MRI has transformed the medical landscape by providing high resolution anatomic images with excellent soft tissue contrast. MRI is important for identifying neuropathology, assessing cardiovascular function, evaluating spinal and joint disease, and diagnosing and staging cancer both pre-and-post-operatively. The power of MRI lies in its ability to generate novel contrast mechanisms, which has expanded the scope of MRI beyond anatomic imaging into quantitative imaging of an array of both physical and physiological processes, including diffusion, spectroscopy, blood flow, and perfusion.;In this dissertation, I focus specifically on perfusion imaging of the heart. Many techniques asides from MRI are also sensitive to perfusion, such as SPECT, PET, CT, and ultrasound. We believe MRI has the potential to supersede these various modalities because it can offer high spatial resolution without ionizing radiation and can even avoid injected contrast agents through a novel technique called arterial spin labeling. The benefits of using ASL MRI are two-fold. One, ASL can be used repeatedly in patients for long-term evaluation of perfusion defects, which may be useful to assess disease progression. Two, ASL is contrast free and can be tolerated in a large population of patients with renal disease. This population is more susceptible to coronary artery disease than the general population and have the most to gain from a clinically viable cardiac ASL protocol.;Therefore, the focus of this work is to take the necessary steps to make ASL clinically viable. In its current implementation, ASL has poor sensitivity and limited spatial coverage. Poor sensitivity is unavoidable because without contrast agents, the perfusion signal in ASL is low, on the order of 12% of the background signal from the heart itself. This makes maximizing the sensitivity of the ASL signal all the more important. Our first step was to determine how imaging parameters influence the sensitivity of not only ASL, but quantitative cardiac MRI in general. The metric we used to quantify sensitivity was the variability of cardiac images over time, or in technical terms, the temporal signal to noise ratio. If certain imaging parameters lead to large fluctuations in the cardiac images, there would be no hope of unmasking a small 1--2% ASL signal change. Through this study, I made the important finding that there is a fundamental limit towards minimizing these fluctuations, at which point further increases in the raw signal strength become unnecessary.;With suitable imaging parameters at hand, I turned my attention towards the ASL pulse sequence itself. Traditionally, ASL labels arterial blood using a magnetization preparation upstream of the tissue of interest and images after a post labeling delay to allow the labeled blood to enter the tissue. The amount of time it takes the labeled blood to reach the imaged tissue, called the transit delay, is a critical determinant of the sensitivity of the ASL signal because labeled blood decays over time. In an extreme example, if the labeled blood signal has completely decayed before its arrival, ASL would have zero sensitivity. To counteract transit delay, I opted to use velocity selective labeling, which labels arterial blood based on its velocity as opposed to its spatial position. In theory, blood within small arterioles within the imaging slice can be labeled to eliminate transit delay completely. In practice, blood further upstream the arterial tree is typically targeted to minimize the transit time. The choice of velocity selective parameters determines how far upstream and in which direction labeling occurs in the arterial tree. These parameters were systematically varied and resulting perfusion estimate were compared with those obtained from the standard spatially selective FAIR ASL. Through this study, I found suitable velocity selective parameters and demonstrated the feasibility of VSASL.;Lastly, I sought to increase spatial coverage of ASL. Simple sequential multi-slice imaging is not possible due to the limited scan times (~ 3 min) required for ASL under pharmacologically induced stress. 3D imaging may have superior slice coverage, but has long scan times and is unnecessary; three axial slices of the heart is sufficient for clinical evaluation. Instead, I chose simultaneous multi-slice imaging because of its fast imaging time. In SMS imaging, multiple slices are simultaneously excited and shifted with respect to each other to ease their reconstruction. While still preliminary, I demonstrated that two slices can be simultaneously excited and reconstructed to obtain perfusion similar with single slice cardiac ASL.
机译:磁共振成像(MRI)是Paul Lauterbur于1971年发明的一种医学成像技术,它使用核磁共振原理生成图像。在过去的50年中,MRI被广泛誉为最重要的医学发明,通过提供具有出色软组织对比度的高分辨率解剖图像,MRI已改变了医学领域。 MRI对于识别神经病理学,评估心血管功能,评估脊柱和关节疾病以及在手术前后均对癌症进行诊断和分期非常重要。 MRI的强大之处在于它能够产生新颖的对比机制,从而将MRI的范围从解剖学成像扩展到对一系列物理和生理过程(包括扩散,光谱,血流和灌注)进行定量成像。本文主要研究心脏的灌注成像。 MRI的许多辅助技术也对灌注敏感,例如SPECT,PET,CT和超声。我们认为MRI有潜力取代这些各种模式,因为它可以提供高空间分辨率而不会电离辐射,甚至可以通过称为动脉自旋标记的新技术避免注射造影剂。使用ASL MRI的好处有两个。第一,ASL可以在患者中反复使用,以长期评估灌注缺陷,这可能有助于评估疾病的进展。第二,ASL是无反差的,并且可以在大量肾病患者中耐受。该人群比普通人群更易患冠状动脉疾病,并且从临床上可行的心脏ASL方案中获益最大。因此,这项工作的重点是采取必要步骤使ASL在临床上可行。在当前的实施中,ASL的灵敏度较差且空间覆盖范围有限。灵敏度差是不可避免的,因为如果没有造影剂,ASL中的灌注信号就很低,大约是来自心脏本身的背景信号的12%。这使得最大化ASL信号的灵敏度变得更加重要。我们的第一步是确定成像参数如何不仅影响ASL的敏感性,而且还影响总体定量MRI的敏感性。我们用来量化灵敏度的指标是心脏图像随时间的变化,或者从技术角度来说,是时间信噪比。如果某些成像参数导致心脏图像出现较大波动,则没有希望掩盖1--2%的小ASL信号变化。通过这项研究,我发现了一个重要发现,即最小化这些波动存在一个基本限制,此时不再需要进一步增加原始信号强度。;有了合适的成像参数后,我将注意力转向了ASL脉冲序列本身。传统上,ASL使用磁化制剂在目标组织的上游标记动脉血,并在后期标记延迟后使图像成像,以使标记的血液进入组织。被标记的血液到达成像组织所花费的时间(称为传输延迟)是ASL信号灵敏度的关键决定因素,因为被标记的血液会随着时间而衰减。在一个极端的例子中,如果标记的血液信号在到达之前已完全衰减,则ASL的灵敏度为零。为了抵消运输延迟,我选择使用速度选择标记,该标记根据动脉血的速度而不是其空间位置来标记动脉血。从理论上讲,可以标记成像切片内小动脉内的血液,以完全消除转运延迟。在实践中,通常将动脉树上游的血液作为目标,以使运输时间最小化。速度选择参数的选择确定了在动脉树中向上游延伸的方向以及沿哪个方向进行标记。这些参数被系统地改变,并且将得到的灌注估计值与从标准空间选择性FAIR ASL获得的参数进行比较。通过这项研究,我找到了合适的速度选择参数,并证明了VSASL的可行性。最后,我试图增加ASL的空间覆盖率。由于在药理学诱发的压力下ASL所需的扫描时间有限(〜3分钟),因此无法进行简单的连续多层成像。 3D成像可能具有出色的切片覆盖率,但扫描时间长且不必要。心脏的三个轴向切片足以进行临床评估。相反,由于其快速的成像时间,我选择了同时进行多层成像。在SMS成像中,多个切片同时被激发和相对于彼此移动,以简化其重建过程。虽然还很初步,但我证明可以同时激发和重建两个切片,以获得与单片心脏ASL相似的灌注。

著录项

  • 作者

    Jao, Terrence.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Medicine.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 80 p.
  • 总页数 80
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号