首页> 外文期刊>科儀新知 >Nanoplasmonic Sensing for Biomolecular Function Analysis
【24h】

Nanoplasmonic Sensing for Biomolecular Function Analysis

机译:用于生物分子功能分析的纳米等离子体传感

获取原文
获取原文并翻译 | 示例
       

摘要

Surface plasmon resonance (SPR) biosensing has become a standard practice in the investigation of biomolecular interaction analysis (BIA), because it is highly sensitive to the resonance condition on the sensing surface caused by environmental changes and do not require any extrinsic labeling. However, the detection limit of the conventional SPR biosensors is insufficient for the monitoring of low concentrations of small biomolecular analytes. In addition, the conventional SPR biosensor only can provide kinetic analysis information in the BIA. A more powerful biorecognition system is required not only to provide the kinetic analysis, but also to have the capability of monitoring biomolecular conformational and structural changes or trends. Therefore, in this study, nanoplasmonic technology was used to overcome three above challenges. First, patternized gold nanoparticle-enhanced plasmonic effects are utilized to manipulate particle plasmons or localized surface plasmons and enhance the biosensor sensitivity. The sensitivity of plasmonic biosensors was enhanced about 10-fold by controlling the size and volume fraction of the embedded Au nanoclusters in dielectric films. Furthermore, a coupled waveguide-surface plasmon resonance biosensor not only retains the same sensing sensitivity as that of a conventional SPR device, but also has the capability of monitoring biomolecular conformational change. Finally, with helps of attenuated total reflection surface-enhanced Raman scattering to detect the structural change of biomolecules, an advanced biomolecular recognition system with the three plasmonic techniques can provide more information in a variety of BIA. Therefore, the nanoplasmonic sensing will be a novel biosensing platform for biomolecular function analysis in fast diagnostics, drug discovery, and proteomics.
机译:表面等离子体激元共振(SPR)生物传感已成为生物分子相互作用分析(BIA)研究中的标准实践,因为它对环境变化引起的传感表面共振条件高度敏感,并且不需要任何外部标记。然而,常规SPR生物传感器的检测极限不足以监测低浓度的小生物分子分析物。此外,常规的SPR生物传感器只能在BIA中提供动力学分析信息。需要一个功能更强大的生物识别系统,不仅提供动力学分析,而且还具有监测生物分子构象和结构变化或趋势的能力。因此,在这项研究中,纳米等离子体技术被用来克服上述三个挑战。首先,图案化的金纳米粒子增强的等离激元效应被用来操纵粒子等离激元或局部表面等离激元并增强生物传感器的灵敏度。通过控制电介质膜中嵌入的Au纳米团簇的大小和体积分数,等离子生物传感器的灵敏度提高了约10倍。此外,耦合的波导表面等离子体激元共振生物传感器不仅保持与常规SPR装置相同的感测灵敏度,而且还具有监测生物分子构象变化的能力。最后,借助衰减的全反射表面增强拉曼散射来检测生物分子的结构变化,具有三种等离子体技术的先进生物分子识别系统可以在多种BIA中提供更多信息。因此,纳米等离子体传感将成为用于快速诊断,药物发现和蛋白质组学中生物分子功能分析的新型生物传感平台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号