首页> 外文期刊>Computational Materials Science >The void nucleation strengths of the Cu-Ni-Nb- based nanoscale metallic multilayers under high strain rate tensile loadings
【24h】

The void nucleation strengths of the Cu-Ni-Nb- based nanoscale metallic multilayers under high strain rate tensile loadings

机译:高应变速率拉伸载荷下Cu-Ni-Nb-基纳米金属多层体的空核强度

获取原文
获取原文并翻译 | 示例
           

摘要

The mechanical behavior of Cu-Ni-Nb- based nanoscale metallic multilayers (NMM) under high strain rate loadings is investigated in this work using molecular dynamics simulations. The simulations of NMMs with various individual layer thicknesses under uniaxial tensile strains at two different controlled strain rates (10~9/s and 10~(10)/s) are performed. This type of loading condition generates a stress state necessary for void nucleation commonly observed under shock loading. The mechanisms for void nucleation in the NMMs are examined and identified; the void nucleation strengths (VNS) of the NMMs and their variations with respect to increasing individual layer thickness as well as available nucleation sites(affected by addition of interfacial disconnections) are obtained and explained. It is discovered that the void always nucleate from within the Cu layers, where the partial dislocations intersect with each other or with existing stacking faults. The void nucleation strength of the NMMs is closely related to the density of available sites for void nucleation. By introducing interfacial steps into the incoherent interfaces of the NMMs the abundance of dislocation sources is changed, thus more (less) sites for void nucleation are produced which decrease (increase) the void nucleation strength of the NMMs.
机译:在这项工作中使用分子动力学模拟研究了铜-镍-铌-铌基纳米级金属多层(NMM)在高应变速率载荷下的力学行为。在两种不同的受控应变速率(10〜9 / s和10〜(10)/ s)下,对单轴拉伸应变下具有不同单层厚度的NMM进行了仿真。这种载荷条件会产生在冲击载荷下通常观察到的空隙形核所必需的应力状态。在NMM中检查和确定了空核成核的机制;获得并解释了NMM的空隙形核强度(VNS)及其相对于增加单个层厚度以及可用形核部位(受界面断开的影响)的变化。发现空隙总是从铜层内部成核,其中部分位错彼此交叉或与现有的堆垛层错相交。 NMM的空核强度与空核的可用位点密度密切相关。通过将界面步骤引入到NMM的非相干界面中,位错源的丰度发生了变化,从而产生了更多(更少)的空核,从而降低(增加)了NMM的空核强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号