...
首页> 外文期刊>Computational Materials Science >Bridging the length scales through nonlocal hierarchical multiscale modeling scheme
【24h】

Bridging the length scales through nonlocal hierarchical multiscale modeling scheme

机译:通过非局部分层多尺度建模方案桥接长度尺度

获取原文
获取原文并翻译 | 示例

摘要

In the current work the nonlocal multiscale bottom-up peridynamic framework is modified (i.e. extended PFHMM) in order to upscale the nonlocally interacting models at different length scales. The generalized scheme was implemented to a complex heterogeneous polymer: ultra high molecular weight polyethylene (UHMWPE). Using extended PFHMM, the atomistic model of UHMWPE was linked with the coarser peridynamic (PD) representative unitcells. Different phases (e.g. highly oriented unidirectional, amorphous or semicrystalline) of UHMWPE were blended during upscaling of polyethylene (PE) microfibrils. In literature, a thorough theoretical investigation on the deformation mechanism of highly oriented UHMWPE microfibrils is not available. So the current work also rigorously discussed the role of different loading conditions (such as torsion, tension and compression), pre-existing damages and aspect ratios on the stiffness as well as the strength of the UHMWPE microfibrils by using molecular dynamics (MD) simulation. Through MD simulation, the effect of complex-loading condition on the strength reduction was also investigated. Cauchy–Born rule was applied through extended PFHMM in order to link the deformation from atomistic scale models with the macroscale UHMWPE representative unitcells. Finally, a slightly modified AIREBO potential was used to show that the unidirectional UHMWPE is independent of strain rate. The results had reasonable agreement with the experimental results. The current work can be considered to be a building block for multiscale modeling of complex heterogeneous materials.
机译:在当前工作中,修改了非局部多尺度自下而上的围岩动力学框架(即扩展的PFHMM),以便在不同的长度尺度上扩展非局部相互作用的模型。通用方案适用于复杂的非均质聚合物:超高分子量聚乙烯(UHMWPE)。使用扩展的PFHMM,UHMWPE的原子模型与较粗糙的动力(PD)代表性晶胞相连。在聚乙烯(PE)微纤维的按比例放大期间,将UHMWPE的不同相(例如高度取向的单向,无定形或半结晶)共混。在文献中,尚没有关于高度取向的UHMWPE微纤维变形机理的详尽理论研究。因此,当前的工作还使用分子动力学(MD)模拟,严格讨论了不同的负载条件(例如扭转,拉伸和压缩),预先存在的损伤和长宽比对UHMWPE微纤维的刚度和强度的作用。 。通过MD模拟,研究了复杂加载条件对强度降低的影响。 Cauchy-Born规则通过扩展PFHMM应用,以便将原子尺度模型的变形与UHMWPE宏观代表单元联系起来。最后,使用略微修改的AIREBO电势来表明单向UHMWPE与应变率无关。结果与实验结果基本吻合。当前的工作可以被认为是复杂异质材料多尺度建模的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号