首页> 外文期刊>Computers in Biology and Medicine >Computational comparison of three posterior lumbar interbody fusion techniques by using porous titanium interbody cages with 50% porosity
【24h】

Computational comparison of three posterior lumbar interbody fusion techniques by using porous titanium interbody cages with 50% porosity

机译:孔隙度为50%的多孔钛椎体椎间融合器对三种后路腰椎椎间融合技术的计算比较

获取原文
获取原文并翻译 | 示例
           

摘要

This study investigated the biomechanical response of porous cages and lumbar spine segments immediately after surgery and after bone fusion, in addition to the long-term effects of various posterior lumbar interbody fusion (PLIF) techniques, by using the finite element method. Lumbar L3-L4 models based on three PLIF techniques (a single cage at the center of the intervertebral space, a single cage half anterior to the intervertebral space, and two cages bilateral to the intervertebral space) with and without bone ingrowth were used to determine the biomechanical response of porous cages and lumbar segments instrumented with porous titanium cages (cage porosity=50%, pore diameter= 1 mm). The results indicated that bone fusion enhanced the stability of the lumbar segments with porous cages without any posterior instrumentation and reduced the peak von Mises stress in the cortical bones and porous cages. Two cages placed bilateral to the intervertebral space achieved the highest structural stability in the lumbar segment and lowest von Mises stress in the cages under both bone fusion conditions. Under identical loading (2-N m), the range of motion in the single cage at the center of the intervertebral space with bone fusion decreased by 11% (from 1.18 to 1.05) during flexion and by 66.5% (from 4.46 degrees to 1.5 degrees) during extension in the single cage half-anterior to the intervertebral space with bone fusion compared with no-fusion models. Thus, two porous titanium cages with 50% porosity can achieve high stability of a lumbar segment with PLIF. If only one cage is available, placing the cage half-anterior to the inter vertebral space is recommended for managing degenerated lumbar segments. (C) 2016 Elsevier Ltd. All rights reserved.
机译:这项研究使用有限元方法,研究了各种后路腰椎椎间融合术(PLIF)技术的长期效果,以及在手术后和骨融合后立即研究了多孔笼和腰椎节段的生物力学响应。使用基于三种PLIF技术的腰椎L3-L4模型(在椎间隙中央的单个笼,在椎间隙前方半个的单个笼以及在椎间隙两侧的两个笼)有无骨长入来确定装有多孔钛笼的多孔笼和腰椎节段的生物力学响应(笼孔隙率= 50%,孔径= 1 mm)。结果表明,骨融合增强了没有任何后置器械的多孔笼的腰节的稳定性,并降低了皮质骨和多孔笼中的von Mises峰值应力。在两种骨融合情况下,两个放置在椎间隙两侧的笼在腰节中获得了最高的结构稳定性,并且在笼中获得了最低的von Mises应力。在相同的载荷(2-N m)下,椎间融合器在椎间隙中心的单个笼中的运动范围在屈曲过程中降低了11%(从1.18降低到1.05),在运动时降低了66.5%(从4.46度降低到1.5)与无融合模型相比,在椎骨间隙前半部的单个笼子中,通过骨融合术进行伸展度的测量。因此,两个具有50%孔隙率的多孔钛笼可以通过PLIF实现腰椎节段的高稳定性。如果只有一个笼子,建议将笼子放置在椎间间隙的前半部,以管理退化的腰椎节段。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号