首页> 外文期刊>Computers in Biology and Medicine >A synergic simulation-optimization approach for analyzing biomolecular dynamics in living organisms.
【24h】

A synergic simulation-optimization approach for analyzing biomolecular dynamics in living organisms.

机译:一种用于分析活生物体中生物分子动力学的协同模拟优化方法。

获取原文
获取原文并翻译 | 示例
           

摘要

A synergic duo simulation-optimization approach was developed and implemented to study protein-substrate dynamics and binding kinetics in living organisms. The forward problem is a system of several coupled nonlinear partial differential equations which, with a given set of kinetics and diffusion parameters, can provide not only the commonly used bleached area-averaged time series in fluorescence microscopy experiments but more informative full biomolecular/drug space-time series and can be successfully used to study dynamics of both Dirac and Gaussian fluorescence-labeled biomacromolecules in vivo. The incomplete Cholesky preconditioner was coupled with the finite difference discretization scheme and an adaptive time-stepping strategy to solve the forward problem. The proposed approach was validated with analytical as well as reference solutions and used to simulate dynamics of GFP-tagged glucocorticoid receptor (GFP-GR) in mouse cancer cell during a fluorescence recovery after photobleaching experiment. Model analysis indicates that the commonly practiced bleach spot-averaged time series is not an efficient approach to extract physiological information from the fluorescence microscopy protocols. It was recommended that experimental biophysicists should use full space-time series, resulting from experimental protocols, to study dynamics of biomacromolecules and drugs in living organisms. It was also concluded that in parameterization of biological mass transfer processes, setting the norm of the gradient of the penalty function at the solution to zero is not an efficient stopping rule to end the inverse algorithm. Theoreticians should use multi-criteria stopping rules to quantify model parameters by optimization.
机译:开发了一种协同二重奏模拟优化方法,用于研究生物体中蛋白质-底物的动力学和结合动力学。前向问题是一个由多个耦合的非线性偏微分方程组成的系统,该方程组具有给定的动力学和扩散参数集,不仅可以提供荧光显微镜实验中常用的漂白面积平均时间序列,还可以提供更全面的生物分子/药物空间信息时间序列,可以成功地用于研究狄拉克和高斯荧光标记的生物大分子在体内的动力学。不完整的Cholesky预处理器与有限差分离散化方案和自适应时步策略相结合,解决了前向问题。该提议的方法已通过分析和参考解决方案的验证,并用于在光漂白实验后的荧光恢复过程中模拟GFP标记的糖皮质激素受体(GFP-GR)在小鼠癌细胞中的动力学。模型分析表明,常用的漂白剂斑点平均时间序列不是从荧光显微镜方案中提取生理信息的有效方法。建议实验生物物理学家应根据实验方案使用完整的时空序列,以研究生物大分子和药物在活生物体中的动力学。还得出结论,在生物传质过程的参数化过程中,将惩罚函数在解处的梯度范数设置为零并不是终止逆算法的有效停止规则。理论家应该使用多准则停止规则来通过优化来量化模型参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号