【24h】

Parametric-based brain Magnetic Resonance Elastography using a Rayleigh damping material model

机译:使用瑞利阻尼材料模型的基于参数的脑磁共振弹性成像

获取原文
获取原文并翻译 | 示例
       

摘要

The three-parameter Rayleigh damping (RD) model applied to time-harmonic Magnetic Resonance Elastography (MRE) has potential to better characterise fluid-saturated tissue systems. However, it is not uniquely identifiable at a single frequency. One solution to this problem involves simultaneous inverse problem solution of multiple input frequencies over a broad range. As data is often limited, an alternative elegant solution is a parametric RD reconstruction, where one of the RD parameters (μI or ρI) is globally constrained allowing accurate identification of the remaining two RD parameters. This research examines this parametric inversion approach as applied to in vivo brain imaging. Overall, success was achieved in reconstruction of the real shear modulus (μR) that showed good correlation with brain anatomical structures. The mean and standard deviation shear stiffness values of the white and gray matter were found to be 3±0.11kPa and 2.2±0.11kPa, respectively, which are in good agreement with values established in the literature or measured by mechanical testing. Parametric results with globally constrained μI indicate that selecting a reasonable value for the μI distribution has a major effect on the reconstructed ρI image and concomitant damping ratio (ξd). More specifically, the reconstructed ρI image using a realistic μI=333Pa value representative of a greater portion of the brain tissue showed more accurate differentiation of the ventricles within the intracranial matter compared to μI=1000Pa, and ξd reconstruction with μI=333Pa accurately captured the higher damping levels expected within the vicinity of the ventricles. Parametric RD reconstruction shows potential for accurate recovery of the stiffness characteristics and overall damping profile of the in vivo living brain despite its underlying limitations. Hence, a parametric approach could be valuable with RD models for diagnostic MRE imaging with single frequency data.
机译:应用于时谐波磁共振弹性成像(MRE)的三参数瑞利阻尼(RD)模型具有更好地表征流体饱和组织系统的潜力。但是,在单个频率上不是唯一可识别的。解决该问题的一种方法是在较宽的范围内同时解决多个输入频率的逆问题。由于数据通常很有限,因此一种替代性的解决方案是参数化RD重构,其中RD参数之一(μI或ρI)受到全局限制,从而可以准确识别其余两个RD参数。这项研究检查了应用于体内脑成像的这种参数反演方法。总的来说,重建真实剪切模量(μR)取得了成功,该剪切模量与脑部解剖结构具有良好的相关性。发现白质和灰质的平均和标准偏差剪切刚度值分别为3±0.11kPa和2.2±0.11kPa,这与文献中确定的值或通过机械测试测得的值非常吻合。全局约束μI的参数结果表明,为μI分布选择一个合理的值对重构的ρI图像和伴随的阻尼比(ξd)具有重大影响。更具体地说,与实际的μI= 333Pa相比,使用代表人体大部分组织的实际μI= 333Pa值重建的ρI图像显示颅内物质内心室的分化更准确,而μI= 333Pa的ξd重建可精确捕获在心室附近预期会有更高的阻尼水平。尽管其潜在的局限性,参数化RD重建显示了潜在的准确性,可以准确恢复体内活体大脑的僵硬特征和整体阻尼曲线。因此,参数方法对于RD模型进行单频率数据诊断MRE成像可能很有价值。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号