...
首页> 外文期刊>Computer Modeling in Engineering & Sciences >Solution of Post-Buckling & Limit Load Problems, Without Inverting the Tangent Stiffness Matrix & Without Using Arc-Length Methods
【24h】

Solution of Post-Buckling & Limit Load Problems, Without Inverting the Tangent Stiffness Matrix & Without Using Arc-Length Methods

机译:在不求正切刚度矩阵且不使用弧长方法的情况下解决后屈曲和极限载荷问题

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this study, the Scalar Homotopy Methods are applied to the solution of post-buckling and limit load problems of solids and structures, as exemplified by simple plane elastic frames, considering only geometrical nonlinearities. Explicitly derived tangent stiffness matrices and nodal forces of large-deformation planar beam elements, with two translational and one rotational degrees of freedom at each node, are adopted following the work of [Kondoh and Atluri (1986)]. By using the Scalar Homotopy Methods, the displacements of the equilibrium state are iteratively solved for, without inverting the Jacobian (tangent stiffness) matrix. It is well-known that, the simple Newton's method (and the Newton-Raphson iteration method that is widely used in nonlinear structural mechanics), which necessitates the inversion of the Jacobian matrix, fails to pass the limit load as the Jacobian matrix becomes singular. Although the so called arc-length method can resolve this problem by limiting both the incremental displacements and forces, it is quite complex for implementation. Moreover, inverting the Jacobian matrix generally consumes the majority of the computational burden especially for large-scale problems. On the contrary, by using the presently developed Scalar Homotopy Methods, convergence near limit loads, and in the post-buckling region, can be easily achieved, without inverting the tangent stiffness matrix and without using complex arc-length methods. The present paper thus opens a promising path for conducting post-buckling and limit-load analyses of nonlinear structures. While the simple Williams' toggle is considered as an illustrative example in this paper, extension to general finite element analyses of space frames, plates, shells and elastic-plastic solids will be considered in forthcoming studies.
机译:在这项研究中,标量同伦方法被应用于实体和结构的屈曲和极限载荷问题的解决方案,以简单的平面弹性框架为例,仅考虑几何非线性。在[Kondoh and Atluri(1986)]的工作之后,采用了显式推导的大变形平面梁单元的切线刚度矩阵和节点力,每个节点具有两个平移和一个旋转自由度。通过使用标量同伦方法,可以迭代求解平衡态的位移,而无需反转Jacobian(切线刚度)矩阵。众所周知,需要进行雅可比矩阵求逆的简单牛顿法(以及在非线性结构力学中广泛使用的牛顿-拉夫森迭代法)无法通过极限载荷,因为雅可比矩阵变得奇异。尽管所谓的弧长方法可以通过限制增量位移和力来解决此问题,但实现起来却相当复杂。此外,反演雅可比矩阵通常会消耗大量的计算负担,尤其是对于大规模问题。相反,通过使用当前开发的标量同伦方法,可以很容易地在极限载荷附近和屈曲后区域实现收敛,而无需反转切线刚度矩阵并且无需使用复杂的弧长方法。因此,本文为进行非线性结构的后屈曲和极限载荷分析开辟了一条有希望的道路。虽然本文以简单的威廉姆斯肘节为例,但在即将进行的研究中将考虑扩展到对空间框架,板,壳和弹塑性固体的一般有限元分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号