...
首页> 外文期刊>Computer physics communications >SPILADY: A parallel CPU and GPU code for spin-lattice magnetic molecular dynamics simulations
【24h】

SPILADY: A parallel CPU and GPU code for spin-lattice magnetic molecular dynamics simulations

机译:SPILADY:用于自旋晶格磁性分子动力学模拟的并行CPU和GPU代码

获取原文
获取原文并翻译 | 示例

摘要

Spin lattice dynamics generalizes molecular dynamics to magnetic materials, where dynamic variables describing an evolving atomic system include not only coordinates and velocities of atoms but also directions and magnitudes of atomic magnetic moments (spins). Spin-lattice dynamics simulates the collective time evolution of spins and atoms, taking into account the effect of non-collinear magnetism on interatomic forces. Applications of the method include atomistic models for defects, dislocations and surfaces in magnetic materials, thermally activated diffusion of defects, magnetic phase transitions, and various magnetic and lattice relaxation phenomena. Spin-lattice dynamics retains all the capabilities of molecular dynamics, adding to them the treatment of non-collinear magnetic degrees of freedom. The spin-lattice dynamics time integration algorithm uses symplectic Suzuki-Trotter decomposition of atomic coordinate, velocity and spin evolution operators, and delivers highly accurate numerical solutions of dynamic evolution equations over extended intervals of time. The code is parallelized in coordinate and spin spaces, and is written in OpenMP C/C++ for CPU and in CUDA C/C++ for Nvidia GPU implementations. Temperatures of atoms and spins are controlled by Langevin thermostats. Conduction electrons are treated by coupling the discrete spin-lattice dynamics equations for atoms and spins to the heat transfer equation for the electrons. Worked examples include simulations of thermalization of ferromagnetic bcc iron, the dynamics of laser pulse demagnetization, and collision cascades.
机译:自旋晶格动力学将分子动力学概括为磁性材料,其中描述一个不断发展的原子系统的动态变量不仅包括原子的坐标和速度,还包括原子磁矩(自旋)的方向和大小。考虑非共线磁性对原子间力的影响,自旋晶格动力学模拟了自旋和原子的集体时间演化。该方法的应用包括原子模型中的缺陷,磁性材料中的位错和表面,缺陷的热活化扩散,磁性相变以及各种磁性和晶格弛豫现象。自旋晶格动力学保留了分子动力学的所有功能,并增加了对非共线磁性自由度的处理。自旋晶格动力学时间积分算法使用原子坐标,速度和自旋演化算子的​​辛Suzuki-Trotter分解,并在延长的时间间隔内提供了动态演化方程的高精度数值解。该代码在坐标空间和旋转空间中并行化,并用OpenMP C / C ++编写(用于CPU)和CUDA C / C ++编写(用于Nvidia GPU实现)。原子和自旋的温度由Langevin恒温器控制。通过将原子和自旋的离散自旋-晶格动力学方程式耦合到电子的热传递方程式来处理传导电子。工作示例包括模拟铁磁密件抄送铁的热化,激光脉冲消磁的动力学以及碰撞级联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号