首页> 外文期刊>Biomacromolecules >Preserving Catalytic Activity and Enhancing Biochemical Stability of the Therapeutic Enzyme Asparaginase by Biocompatible Multilayered Polyelectrolyte Microcapsules
【24h】

Preserving Catalytic Activity and Enhancing Biochemical Stability of the Therapeutic Enzyme Asparaginase by Biocompatible Multilayered Polyelectrolyte Microcapsules

机译:通过生物相容性多层聚电解质微胶囊保持催化活性和提高治疗酶天冬酰胺酶的生化稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

The present study focuses on the formation of microcapsules containing catalytically active L-asparaginase (L-ASNase), a protein drug of high value in antileukemic therapy. We make use of the layer-by-layer (LbL) technique to coat protein-loaded calcium carbonate (CaCO3) particles with two or three poly dextran/poly-L-arginine-based bilayers. To achieve high loading efficiency, the CaCO3 template was generated by coprecipitation with the enzyme. After assembly of the polymer shell, the CaCO3 core material was dissolved under mild conditions by dialysis against 20 mM EDTA. Biochemical stability of the encapsulated L-asparaginase was analyzed by treating the capsules with the proteases trypsin and thrombin, which are known to degrade and inactivate the enzyme during leukemia treatment, allowing us to test for resistance against proteolysis by physiologically relevant proteases through measurement of residual L-asparaginase activities. In addition, the thermal stability, the stability at the physiological temperature, and the long-term storage stability of the encapsulated enzyme were investigated. We show that encapsulation of L-asparaginase remarkably improves both proteolytic resistance and thermal inactivation at 37 °C, which could considerably prolong the enzyme's in vivo half-life during application in acute lymphoblastic leukemia (ALL). Importantly, the use of low EDTA concentrations for the dissolution of CaCO3 by dialysis could be a general approach in cases where the activity of sensitive biomacromolecules is inhibited, or even irreversibly damaged, when standard protocols for fabrication of such LbL microcapsules are used. Encapsulated and free enzyme showed similar efficacies in driving leukemic cells to apoptosis.
机译:本研究的重点是含有催化活性的L-天冬酰胺酶(L-ASNase)的微胶囊的形成,L-ASNase是一种在抗白血病治疗中具有高价值的蛋白药物。我们利用逐层(LbL)技术在带有蛋白质的碳酸钙(CaCO3)颗粒上涂覆两个或三个基于聚葡聚糖/聚L-精氨酸的双层膜。为了实现高加载效率,通过与酶共沉淀生成了CaCO3模板。组装完聚合物外壳后,将CaCO3核心材料在温和条件下通过针对20 mM EDTA的透析进行溶解。通过用胰蛋白酶和凝血酶处理胶囊来分析胶囊化的L-天冬酰胺酶的生化稳定性,胰蛋白酶和凝血酶已知在白血病治疗期间会降解和灭活该酶,从而使我们能够通过测量残留量来测试生理相关蛋白酶对蛋白水解的抗性L-天冬酰胺酶活性。另外,研究了包封的酶的热稳定性,在生理温度下的稳定性和长期储存稳定性。我们显示,L-天冬酰胺酶的封装显着改善了37°C时的蛋白水解抗性和热失活,这可以在急性淋巴细胞白血病(ALL)应用期间大大延长酶的体内半衰期。重要的是,当使用标准的制备此类LbL微胶囊的方案来抑制或什至不可逆转地破坏敏感生物大分子的活性时,采用低EDTA浓度通过透析溶解CaCO3可能是一种通用方法。包囊和游离酶在驱动白血病细胞凋亡方面显示出相似的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号