...
首页> 外文期刊>Colloids and Surfaces, B. Biointerfaces >Role of chemical crosslinking in material-driven assembly of fibronectin (nano)networks: 2D surfaces and 3D scaffolds
【24h】

Role of chemical crosslinking in material-driven assembly of fibronectin (nano)networks: 2D surfaces and 3D scaffolds

机译:化学交联在纤连蛋白(纳米)网络的材料驱动组装中的作用:2D表面和3D支架

获取原文
获取原文并翻译 | 示例

摘要

Poly(ethyl acrylate) (PEA) induces the formation of biomimetic fibronectin (FN) (nano)networks upon simple adsorption from solutions, a process referred to as material-driven FN fibrillogenesis. The ability of PEA to organize FN has been demonstrated in 2D and 2.5D environments, but not as yet in 3D scaffolds, which incorporate three-dimensionality and chemical crosslinkers that may influence its fibrillogenic potential. In this paper we show for the first time that while three-dimensionality does not interfere with PEA-induced FN fibrillogenesis, crosslinking does, and we determined the maximum amount of crosslinker that can be added to PEA to maintain FN fibrillogenesis. For this, we synthesised 2D substrates with different amounts of crosslinker (1-10% of ethylene glycol dimethacrylate) and studied the role of crosslinking in FN organization using AFM. The glass transition temperature was seen to increase with crosslinking density and, accordingly, polymer segmental mobility was reduced. The organization of FN after adsorption (formation of FN fibrils) and the availability of the FN cell-binding domain were found to be dependent on crosslinking density. Surface mobility was identified as a key parameter for FN supramolecular organization. PEA networks with up to 2% crosslinker organize the FN in a similar way to non-crosslinked PEA. Scaffolds prepared with 2% crosslinker also had FN (nano)networks assembled on their walls, showing PEA's ability to induce FN fibrillogenesis in 3D environments as long as the amounts of crosslinker is low enough. (C) 2016 The Authors. Published by Elsevier B.V.
机译:聚丙烯酸乙酯(PEA)在从溶液中简单吸附后就诱导了仿生纤连蛋白(FN)(纳米)网络的形成,这一过程称为材料驱动的FN纤维形成。 PEA组织FN的能力已在2D和2.5D环境中得到证明,但尚未在3D支架中得到证明,因为3D支架结合了可能影响其原纤维形成潜力的三维和化学交联剂。在本文中,我们首次表明,三维不影响PEA诱导的FN纤维原纤维形成,而交联则可以,并且我们确定了可添加到PEA中以保持FN纤维原纤维形成的最大数量的交联剂。为此,我们合成了具有不同数量的交联剂(1-10%的乙二醇二甲基丙烯酸酯)的2D基材,并使用AFM研究了交联在FN组织中的作用。观察到玻璃化转变温度随着交联密度的增加而增加,因此,聚合物的段迁移率降低。发现吸附后FN的组织(FN原纤维的形成)和FN细胞结合结构域的可用性取决于交联密度。表面流动性被确定为FN超分子组织的关键参数。具有不超过2%交联剂的PEA网络以与非交联PEA相似的方式组织FN。用2%交联剂制备的支架在其壁上也组装有FN(纳米)网络,表明PEA在3D环境中诱导FN纤维化的能力,只要交联剂的量足够低。 (C)2016作者。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号