首页> 外文期刊>Colloids and Surfaces, B. Biointerfaces >Fabrication of doxorubicin nanoparticles by controlled antisolvent precipitation for enhanced intracellular delivery
【24h】

Fabrication of doxorubicin nanoparticles by controlled antisolvent precipitation for enhanced intracellular delivery

机译:通过控制反溶剂沉淀制备阿霉素纳米颗粒以增强细胞内递送

获取原文
获取原文并翻译 | 示例
           

摘要

Over-expression of ATP-binding cassette transporters is one of the most important mechanisms responsible for multidrug resistance. Here, we aimed to develop a stable polymeric nanoparticle system by flash nanoprecipitation (FNP) for enhanced anticancer drug delivery into drug resistant cancer cells. As an antisolvent precipitation process, FNP works best for highly lipophilic solutes (log P > 6). Thus we also aimed to evaluate the applicability of FNP to drugs with relatively low lipophilicity (log P = 1-2). To this end, doxorubicin (DOX), an anthracycline anticancer agent and a P-gp substrate with a logP of 1.3, was selected as a model drug for the assessment. DOX was successfully incorporated into the amphiphilic diblock copolymer, polyethylene glycol-b-polylactic acid (PEG-b-PEA), by FNP using a four stream multi-inlet vortex mixer. Optimization of key processing parameters and co-formulation with the co-stabilizer, polyvinylpyrrolidone, yielded highly stable, roughly spherical DOX-loaded PEG-b-PLA nanoparticles (DOX.NP) with mean particle size below 100 nm, drug loading up to 14%, and drug encapsulation efficiency up to 49%. DOX.NP exhibited a pH-dependent drug release profile with higher cumulative release rate at acidic pHs. Surface analysis of DOX.NP by XPS revealed an absence of DOX on the particle surface, indicative of complete drug encapsulation. While there were no significant differences in cytotoxic effect on P-gp over-expressing LCC6/MDR cell line between DOX.NP and free DOX in buffered aqueous media, DOX.NP exhibited a considerably higher cellular uptake and intracellular retention after efflux. The apparent lack of cytotoxicity enhancement with DOX.NP may be attributable to its slow DOX release inside the cells. (C) 2015 Elsevier B.V. All rights reserved.
机译:ATP结合盒转运蛋白的过表达是引起多药耐药性的最重要机制之一。在这里,我们旨在通过快速纳米沉淀(FNP)开发稳定的聚合物纳米颗粒系统,以增强抗癌药物向耐药性癌细胞的传递。作为一种抗溶剂沉淀工艺,FNP最适用于高度亲脂性溶质(log P> 6)。因此,我们还旨在评估FNP在亲脂性相对较低的药物中的适用性(log P = 1-2)。为此,选择阿霉素(蒽环类抗癌药和logP为1.3的P-gp底物)作为模型药物进行评估。使用四流多入口涡旋混合器,通过FNP将DOX成功地掺入两亲性二嵌段共聚物聚乙二醇-b-聚乳酸(PEG-b-PEA)中。通过优化关键工艺参数并与共稳定剂聚乙烯吡咯烷酮共同配制,可制得高度稳定的,球形球形的,载有DOX的PEG-b-PLA纳米颗粒(DOX.NP),平均粒径低于100 nm,载药量高达14 %,并且药物封装效率高达49%。 DOX.NP表现出pH依赖性药物释放曲线,在酸性pH值下具有更高的累积释放速率。 XPS对DOX.NP的表面分析表明,颗粒表面没有DOX,表明药物完全包封。尽管在缓冲水介质中,DOX.NP和游离DOX对P-gp过表达LCC6 / MDR细胞系的细胞毒性作用没有显着差异,但DOX.NP在流出后表现出更高的细胞摄取和细胞内滞留性。用DOX.NP明显缺乏细胞毒性增强作用,可能是由于它在细胞内缓慢释放了DOX。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号