...
首页> 外文期刊>ァルミニゥム研究会志 >Extending the functionality of anodicaily oxidized valve metal multilayers by tailoring their morphology, nanostructure and properties
【24h】

Extending the functionality of anodicaily oxidized valve metal multilayers by tailoring their morphology, nanostructure and properties

机译:通过定制其形态,纳米结构和性能来扩展阳极氧化的阀金属多层膜的功能

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Transition metal (including valve metal) oxides possess various useful properties such as supercon?ductivity, magneto-resistance, catalytic activity, electrochromism, gas sensitivity and many others. Nanostructuring of transition metal oxides is an active and competitive area of research because it offers unprecedented opportunities for the development of advanced materials and microsystem components at the nanoscale with improved performances or substantially enhanced properties. In recent years an original approach has been developed to grow 2-D arrays of metal-oxide nanostructures (hillocks, rods, cones etc.), anchored to dielectric or conducting substrates, via smart anodizing of a valve metal bilayer comprising a thin layer of aluminum superimposed on a layer of different metal [1 ]. In this approach, the upper Al layer is first converted into its nanoporous oxide, this being sequentially followed by an?odic oxidation of the underlying metal through the alumina barrier layer. In this situation the alumina layer is used not just as a porous mask but as part of the complex electrochemical system, included in a series of electrochemical and solid-state reactions Up to now, periodic arrays of dot-like oxide nanos?tructures have been successfully grown from the Al/Ta (aluminum-above-tantalum), Al/Ti and Al/W couple and already received several useful applications [2,3]. However, among the above metals, the Ta underlayer has proved to be the only metal that allows reanodizing to substantially higher voltages with its oxide self-directed along the alumina nanopores [2]. These tantala nanocolumns fill the pores length?ening proportionally to the applied voltage until dielectric breakdown interrupts their growth (1 kV at maximum). Thus, further progress with this technique is associated, first, with anodizing and analyti?cally examining more valve-metal couples, which include Nb, Zr, Mo and some of their binary alloys, and second, with applying high voltage reanodizing to possibly stretch up the oxides in the pores, striv?ing to engineer their surface morphologies and discover new functionalities.
机译:过渡金属(包括阀金属)氧化物具有各种有用的特性,例如超导性,磁阻,催化活性,电致变色,气体敏感性等。过渡金属氧化物的纳米结构是研究的活跃和竞争领域,因为它为开发具有改进的性能或实质上增强的性能的纳米级先进材料和微系统组件提供了前所未有的机会。近年来,已开发出一种新颖的方法,通过对包含薄层硅藻土的阀门金属双层进行智能阳极氧化,生长固定在介电或导电基底上的金属氧化物纳米结构的二维阵列(小丘,棒,锥等)。铝叠加在另一种金属上[1]。在这种方法中,首先将上层铝层转化为其纳米多孔氧化物,然后依次通过氧化铝阻挡层对下面的金属进行阳极氧化。在这种情况下,氧化铝层不仅用作多孔掩膜,还用作复杂电化学系统的一部分,包括在一系列电化学和固态反应中。到目前为止,点状氧化物纳米结构的周期性阵列已被使用。从铝/钽(铝以上钽),铝/钛和铝/钨对成功地生长出来,并且已经收到了一些有用的应用[2,3]。但是,在上述金属中,Ta底层已被证明是唯一一种氧化物能够沿着氧化铝纳米孔自导向而重新阳极氧化至更高电压的金属[2]。这些塔塔拉纳米柱填充的孔长与施加的电压成比例,直至介电击穿中断其生长(最大1 kV)。因此,该技术的进一步发展首先与阳极氧化和分析检查更多的阀-金属对有关,其中包括Nb,Zr,Mo及其某些二元合金,其次与施加高压阳极氧化以拉伸改善孔中的氧化物,努力设计其表面形态并发现新的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号