首页> 外文学位 >Structure tailored properties and functionalities of zero-dimensional nanostructures.
【24h】

Structure tailored properties and functionalities of zero-dimensional nanostructures.

机译:零维纳米结构的结构定制特性和功能。

获取原文
获取原文并翻译 | 示例

摘要

The field of nanoscience and nanotechnology has achieved significant progress over last thirty years. Complex nanostructures with tunable properties for novel applications have been successfully fabricated and characterized. In this thesis, I will focus on our recent efforts on precise controlled synthesis of zero-dimensional nanostructures as well as fundamental understanding of the physical behavior of assynthesized nanostructures. Particularly, three topics are presented: (1) Nanoscale crystallinity engineering: we have achieved nanoscale crystallinity control of noble metal nanoparticles with 100% yield by molecular engineering. We have used silver nanoparticles as example to demonstrate synthetic strategy and importance of such control in nanoscale chemical transformation, fundamental electron and phonon couplings and surface plasmon resonance based biological sensors. Such nanoscale crystallinity engineering provides a new pathway for design of complex nanostructures, tailoring nanoscale electronic and mechanical properties as well as controlling classical and quantum coupling interactions; (2) Precise control of core shell nanostructures: we have developed a new universal strategy denoted as intermediated phase assisted phase exchange and reaction (iPAPER) to achieve layer-by-layer control of shell components in core shell structures. Tunable plasmonic, optical and magnetic properties of core shell structures enabled by our iPAPER strategy are further demonstrated. These characterizations are promising for understanding and manipulating nanoscale phenomena as well as assembling nanoscale devices with desirable functionality; and (3) Fundamental spin and structure manipulation of semiconductor quantum dots by hydrostatic pressure. Pressure provides a unique means of modifying materials properties. By measuring dependence of spin dynamics on pressure, we revealed that the spin states of semiconductor quantum dots are very robust. We further provided the first experimental evidence for the existence of a metastable intermediate state before the first-order phase transition of semiconductor quantum dots. Our results are crucial for the future development of quantum information processing based on spin qubits of quantum dots.
机译:在过去的三十年中,纳米科学和纳米技术领域取得了重大进展。已经成功地制造并表征了具有可调谐特性的新型应用复杂纳米结构。在这篇论文中,我将专注于我们最近对零维纳米结构的精确控制合成以及对合成纳米结构的物理行为的基本理解的研究。特别是,提出了三个主题:(1)纳米级结晶度工程:我们已经通过分子工程技术实现了贵金属纳米粒子的纳米级结晶度控制,产率为100%。我们以银纳米颗粒为例来说明合成策略以及这种控制在纳米级化学转化,基本电子和声子耦合以及基于表面等离振子共振的生物传感器中的重要性。这种纳米级结晶度工程为复杂纳米结构的设计,定制纳米级电子和机械性能以及控制经典和量子耦合相互作用提供了新途径。 (2)核壳纳米结构的精确控制:我们开发了一种新的通用策略,称为中间相辅助相交换和反应(iPAPER),以实现核壳结构中壳组分的逐层控制。我们的iPAPER策略使核壳结构具有可调谐的等离激元,光学和磁学性质。这些表征对于理解和操纵纳米级现象以及组装具有所需功能的纳米级器件很有希望。 (3)静水压力对半导体量子点的基本自旋和结构操纵。压力提供了改变材料特性的独特方法。通过测量自旋动力学对压力的依赖性,我们发现半导体量子点的自旋态非常稳健。我们进一步提供了在半导体量子点的一阶相变之前存在亚稳态中间态的第一实验证据。我们的结果对于基于量子点自旋量子位的量子信息处理的未来发展至关重要。

著录项

  • 作者

    Tang, Yun.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Chemistry Physical.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

  • 入库时间 2022-08-17 11:38:08

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号