...
首页> 外文期刊>Biophysical Journal >Computational and analytical modeling of cationic lipid-DNA complexes.
【24h】

Computational and analytical modeling of cationic lipid-DNA complexes.

机译:阳离子脂质-DNA复合物的计算和分析建模。

获取原文
获取原文并翻译 | 示例

摘要

We present a theoretical study of the physical properties of cationic lipid-DNA (CL-DNA) complexes--a promising synthetically based nonviral carrier of DNA for gene therapy. The study is based on a coarse-grained molecular model, which is used in Monte Carlo simulations of mesoscopically large systems over timescales long enough to address experimental reality. In the present work, we focus on the statistical-mechanical behavior of lamellar complexes, which in Monte Carlo simulations self-assemble spontaneously from a disordered random initial state. We measure the DNA-interaxial spacing, d(DNA), and the local cationic area charge density, sigma(M), for a wide range of values of the parameter (c) representing the fraction of cationic lipids. For weakly charged complexes (low values of (c)), we find that d(DNA) has a linear dependence on (c)(-1), which is in excellent agreement with x-ray diffraction experimental data. We also observe, in qualitative agreement with previous Poisson-Boltzmann calculations of the system, large fluctuations in the local area charge density with a pronounced minimum of sigma(M) halfway between adjacent DNA molecules. For highly-charged complexes (large (c)), we find moderate charge density fluctuations and observe deviations from linear dependence of d(DNA) on (c)(-1). This last result, together with other findings such as the decrease in the effective stretching modulus of the complex and the increased rate at which pores are formed in the complex membranes, are indicative of the gradual loss of mechanical stability of the complex, which occurs when (c) becomes large. We suggest that this may be the origin of the recently observed enhanced transfection efficiency of lamellar CL-DNA complexes at high charge densities, because the completion of the transfection process requires the disassembly of the complex and the release of the DNA into the cytoplasm. Some of the structural properties of the system are also predicted by a continuum free energy minimization. The analysis, which semiquantitatively agrees with the computational results, shows that that mesoscale physical behavior of CL-DNA complexes is governed by interplay among electrostatic, elastic, and mixing free energies.
机译:我们对阳离子脂质DNA(CL-DNA)复合物的物理性质进行了理论研究-阳离子复合物是一种有望用于基因治疗的基于合成的非病毒DNA载体。这项研究基于粗粒度的分子模型,该模型用于时间尺度足够长的蒙特卡洛模拟介观的大型系统,可以解决实验问题。在当前的工作中,我们将重点放在层状复合体的统计力学行为上,在蒙特卡洛模拟中,层状复合体是从无序的随机初始状态自发地自组装的。我们测量代表阳离子脂质比例的参数(c)的宽范围值的DNA轴间距d(DNA)和局部阳离子区域电荷密度sigma(M)。对于弱电荷的配合物((c)的低值),我们发现d(DNA)对(c)(-1)具有线性依赖性,这与X射线衍射实验数据非常吻合。我们还观察到,与以前的系统的Poisson-Boltzmann计算在质量上一致,局部电荷密度的大波动以及相邻DNA分子之间的sigma(M)极小。对于高电荷复合物(大(c)),我们发现中等电荷密度波动,并观察到d(DNA)对(c)(-1)的线性依赖性的偏差。最后的结果与其他发现(例如,复合物的有效拉伸模量降低以及复合物膜中形成孔的速率增加)一起表明,复合物的机械稳定性逐渐降低,这种情况发生在(c)变大。我们建议这可能是最近观察到的在高电荷密度下增强层状CL-DNA复合物转染效率的原因,因为完成转染过程需要将复合物分解并将DNA释放到细胞质中。该系统的某些结构特性也可以通过连续自由能最小化来预测。半定量与计算结果吻合的分析表明,CL-DNA复合物的中尺度物理行为受静电,弹性和混合自由能之间的相互作用支配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号