...
首页> 外文期刊>Biophysical Journal >Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy
【24h】

Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy

机译:图像相关光谱法解决细菌中快速,局限的扩散

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

By following single fluorescent molecules in a microscope, single-particle tracking (SPT) can measure diffusion and binding on the nanometer and millisecond scales. Still, although SPT can at its limits characterize the fastest biomolecules as they interact with subcellular environments, this measurement may require advanced illumination techniques such as stroboscopic illumination. Here, we address the challenge of measuring fast subcellular motion by instead analyzing single-molecule data with spatiotemporal image correlation spectroscopy (STICS) with a focus on measurements of confined motion. Our SPT and STICS analysis of simulations of the fast diffusion of confined molecules shows that image blur affects both STICS and SPT, and we find biased diffusion rate measurements for STICS analysis in the limits of fast diffusion and tight confinement due to fitting STICS correlation functions to a Gaussian approximation. However, we determine that with STICS, it is possible to correctly interpret the motion that blurs single-molecule images without advanced illumination techniques or fast cameras. In particular, we present a method to overcome the bias due to image blur by properly estimating the width of the correlation function by directly calculating the correlation function variance instead of using the typical Gaussian fitting procedure. Our simulation results are validated by applying the STICS method to experimental measurements of fast, confined motion: we measure the diffusion of cytosolic mMaple3 in living Escherichia coli cells at 25 frames/s under continuous illumination to illustrate the utility of STICS in an experimental parameter regime for which in-frame motion prevents SPT and tight confinement of fast diffusion precludes stroboscopic illumination. Overall, our application of STICS to freely diffusing cytosolic protein in small cells extends the utility of single-molecule experiments to the regime of fast confined diffusion without requiring advanced microscopy techniques.
机译:通过在显微镜中跟踪单个荧光分子,单粒子跟踪(SPT)可以测量纳米级和毫秒级的扩散和结合。尽管如此,尽管SPT可以在与亚细胞环境相互作用时表征其最快的生物分子,但是这种测量可能需要先进的照明技术,例如频闪照明。在这里,我们通过以时空图像相关光谱法(STICS)分析单分子数据,着重于有限运动的测量,来解决测量快速亚细胞运动的挑战。我们对受限分子的快速扩散进行模拟的SPT和STICS分析表明,图像模糊会影响STICS和SPT,并且由于将STICS相关函数拟合到STICS分析中,我们发现在快速扩散和严格限制的范围内,对于STICS分析存在偏差的扩散速率测量值。高斯近似。但是,我们确定使用STICS可以正确解释模糊单分子图像的运动,而无需使用先进的照明技术或快速摄像头。特别是,我们提出了一种通过直接计算相关函数方差而不是使用典型的高斯拟合程序来正确估计相关函数的宽度,从而克服图像模糊造成的偏差的方法。我们的仿真结果通过将STICS方法应用于快速,受限运动的实验测量而得到验证:我们在连续照明下以25帧/秒的速率测量活性大肠杆菌细胞中胞质mMaple3的扩散,以说明STICS在实验参数体系中的效用镜框内运动可防止SPT,而对快速扩散的严格限制则可避免频闪照明。总的来说,我们在小细胞中自由扩散胞质蛋白的STICS的应用将单分子实验的实用性扩展到了快速限制扩散的范围,而无需先进的显微镜技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号