首页> 外文会议>IEEE International Conference on Plasma Sciences >Fast-frame optical imaging and time-resolved spectroscopy of plasma in a gas discharge-based switch of a microwave pulse compressor
【24h】

Fast-frame optical imaging and time-resolved spectroscopy of plasma in a gas discharge-based switch of a microwave pulse compressor

机译:微波脉冲压缩机基于气体放电的开关中等离子体的快速帧光学成像和时间分辨光谱

获取原文

摘要

Presently, mostly advanced microwave pulse compressors with plasma switches provide hundreds megawatt power in nanosecond pulses. Nevertheless, in spite of significant progress in their development, no data existed on the nanosecond dynamics of the plasma formation under strong microwave fields in pressurized gases that ultimately determine a compressor's output power. In this work, the evolution of the plasma formed in the S-band compressor was studied using fast-frame (2 ns) imaging and time-resolved spectroscopy. The compressor represented a rectangular waveguide-based cavity connected to an H-plane waveguide tee with a shorted side arm. The plasma discharge in the tee side arm was triggered by a Surelite laser. In experiments with optical imaging, the system was filled with dry air at up to 3–10 Pa pressure. It was found that the plasma appears as filaments with diameters of <0.6 mm expanding along the RF electric field with the typical velocity of ∼5–10 cm/s. For time-resolved spectroscopy, the system was filled with helium at 2–10 Pa pressure. The nanosecond dynamics of plasma density was obtained by analyzing the shape of He I spectral lines: triplet 2s-3p (3888.65 Å) and triplet 2p-4d (4471.5 Å). Experimental data showed an evident correlation between the rise time of the plasma density and the peak power of the microwave output pulse: the density rise is steeper when the compressor output power is higher. The density reaches values of the order of 10 cm. Numerical simulations of the microwave energy release from the cavity with the appearance of the plasma yield a good agreement with measured output pulse peak power and waveform.
机译:目前,大多数具有等离子开关的先进微波脉冲压缩机可在纳秒级脉冲中提供数百兆瓦的功率。尽管如此,尽管它们的发展取得了重大进展,但在加压气体的强微波场下,等离子体形成的纳秒动力学方面尚无数据,这些数据最终决定了压缩机的输出功率。在这项工作中,使用快速帧(2 ns)成像和时间分辨光谱学研究了在S波段压缩器中形成的等离子体的演变。压缩机代表一个基于矩形波导管的腔,该腔通过短臂连接到H平面波导管T形。三通臂上的等离子放电是由Surelite激光触发的。在光学成像实验中,系统充满了高达3-10 Pa压力的干燥空气。结果发现,等离子体以直径<0.6 mm的细丝形式出现,沿着RF电场以典型的约5-10 cm / s的速度扩展。对于时间分辨光谱,系统在2-10 Pa的压力下充满了氦气。通过分析He I谱线的形状获得了纳秒级的动力学密度:三重态2s-3p(3888.65Å)和三重态2p-4d(4471.5Å)。实验数据表明,等离子体密度的上升时间与微波输出脉冲的峰值功率之间存在明显的相关性:压缩机输出功率越高,密度上升越陡。密度达到大约10厘米的值。等离子体出现时从腔中释放出的微波能量的数值模拟与测得的输出脉冲峰值功率和波形产生了很好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号