...
首页> 外文期刊>Journal of Tribology >A Multiscale Study on the Wall Slip Effect in a Ceramic-Steel Contact With Nanometer-Thick Lubricant Film by a Nano-to-Elastohydrodynamic Lubrication Approach
【24h】

A Multiscale Study on the Wall Slip Effect in a Ceramic-Steel Contact With Nanometer-Thick Lubricant Film by a Nano-to-Elastohydrodynamic Lubrication Approach

机译:纳米-弹性流体动力润滑法研究陶瓷钢与纳米厚润滑膜接触时壁滑效应的多尺度研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A novel nano-to-elastohydrodynamic lubrication (EHL) multiscale approach, developed to integrate molecular-scale phenomena into macroscopic lubrication models based on the continuum hypothesis, is applied to a lubricated contact problem with a ceramic-steel interface and a nanometric film thickness. Molecular dynamics (MD) simulations are used to quantify wall slip occurring under severe confinement. Its dependence on the sliding velocity, film thickness, pressure, and different wall materials is described through representative analytical laws. These are then coupled to a modified Reynolds equation, where a no-slip condition applies to the ceramic surface and slip occurring on the steel wall is described through a Navier-type boundary condition. The results of this nano-to-EHL approach can contradict the well-established lubrication theory for thin films. In fact, slip can occur over the whole contact length, leading to a significant modification of the lubricant flow and consequently of the film thickness. If both walls move at the same velocity, the flow is reduced at the contact inlet and the film thickness decreases. If the nonslipping wall entrains the fluid, this one is accelerated resulting in a larger mass flow; nevertheless, the surface separation is reduced as the lubricant flows even faster in the contact center. The opposite effect occurs if the slipping surface entrains the fluid, causing a lower mass flow but higher film thickness. Finally, friction is generally smaller compared to the classical no-slip case and becomes independent of the sliding velocity as total slip is approached.
机译:一种新颖的纳米到弹性流体动力润滑(EHL)多尺度方法,该方法是基于连续体假设将分子尺度现象整合到宏观润滑模型中的,该方法应用于具有陶瓷-钢界面和纳米膜厚度的润滑接触问题。分子动力学(MD)模拟用于量化在严格限制下发生的壁滑。通过代表性的分析定律描述了它对滑动速度,膜厚,压力和不同壁材料的依赖性。然后将它们耦合到修改的雷诺方程,其中无滑动条件适用于陶瓷表面,并且通过Navier型边界条件描述了发生在钢壁上的滑动。这种从纳米到EHL方法的结果可能与公认的薄膜润滑理论相矛盾。实际上,在整个接触长度上都可能发生打滑,从而导致润滑剂流量的显着改变,进而导致膜厚度的显着改变。如果两个壁以相同的速度移动,则接触入口处的流量会减少,并且膜厚度会减小。如果防滑壁夹带流体,则该流体会加速,从而导致更大的质量流;但是,由于润滑剂在接触中心的流动速度更快,因此减少了表面分离。如果滑动表面夹带流体,则会产生相反的效果,从而导致较低的质量流量但较高的膜厚度。最后,与传统的不打滑情况相比,摩擦通常较小,并且随着接近总打滑而变得与滑动速度无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号