...
首页> 外文期刊>Journal of Tribology >Fatigue at Nanoscale: An Integrated Stiffness and Depth Sensing Approach to Investigate the Mechanisms of Failure in Diamondlike Carbon Film
【24h】

Fatigue at Nanoscale: An Integrated Stiffness and Depth Sensing Approach to Investigate the Mechanisms of Failure in Diamondlike Carbon Film

机译:纳米级疲劳:研究刚度和深度感测方法的类金刚石碳膜失效机理的综合。

获取原文
获取原文并翻译 | 示例

摘要

Nanoscale impact fatigue tests were conducted to comprehend the relative fatigue performance and failure modes of 100 nm thick diamondlike carbon (DLC) film deposited on a 4 in. diameter Si (100) wafer of 500 μm thickness. The nanofatigue tests were performed using a calibrated TriboIndenter equipped with Berkovich indenter in the load range of 300-1000 μN. Each test was conducted for a total of 999 fatigue cycles (a low cycle fatigue test). Contact depth in this load range varied from 10 to 30 nm. An integrated contact stiffness and depth sensing approach was adapted to understand the mechanisms of fatigue failure. The contact depth and stiffness data indicated some peculiar characteristics, which provided some insights into the mechanisms of cohesive and adhesive failure in thin films. Based on the contact stiffness and depth data, and surface observations of failed DLC films using atomic force microscope and scanning probe microscopy, a five-stage failure mechanism is proposed. The failure of films starts from cohesive failure via cracks perpendicular to the film/substrate interface, resulting in a decrease in contact depth with number of fatigue cycles and no appreciable change in contact stiffness. This is followed by film delamination at the film/substrate interface and release of elastic stored energy (residual stress) resulting in an increase in contact stiffness. Finally, as the film breaks apart the contact stiffness decreases with a corresponding increase in contact depth.
机译:进行了纳米级冲击疲劳测试,以了解沉积在500微米厚的4英寸直径Si(100)晶片上的100 nm厚的类金刚石碳(DLC)膜的相对疲劳性能和破坏模式。纳米疲劳测试是使用配备了Berkovich压头的校准TriboIndenter在300-1000μN的载荷范围内进行的。每个测试共进行了999个疲劳循环(低循环疲劳测试)。在此负载范围内的接触深度为10至30 nm。集成了接触刚度和深度感应方法,以了解疲劳失效的机理。接触深度和刚度数据表明了一些独特的特性,这为薄膜内聚和粘合破坏的机理提供了一些见识。基于接触刚度和深度数据,并通过原子力显微镜和扫描探针显微镜对失效的DLC膜进行表面观察,提出了一种五阶段失效机理。薄膜的破坏是通过垂直于薄膜/基底界面的裂缝的内聚破坏开始的,从而导致接触深度随着疲劳循环次数的减少而降低,并且接触刚度没有明显变化。随后在膜/基底界面处发生膜分层并释放弹性存储的能量(残余应力),从而导致接触刚度增加。最后,随着膜破裂,接触刚度随着接触深度的相应增加而降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号